EnsEMBL Perl API Tutorial

By Michele Clamp. Updated, revised, and rewritten by Michele Clamp, Ewan Birney,
Graham McVicker and Dan Andrews.

Revisions: EB Oct 01, MC Jan 02, MC Mar 02, DA Jul 02, DA Oct 02, GM Oct 02, DA
Feb 03, GM Feb 04

Introduction

This tutorial describes how to use the Ensembl Perl API. It is intended to be an
introduction and demonstration of the general API concepts. This tutorial is not
comprehensive, but it will hopefully enable to reader to become quickly productive, and
facilitate a rapid understanding of the core system. This tutorial assumes at least some
familiarity with Perl.

The Perl API provides a level of abstraction over the Ensembl databases and is used by
the Ensembl web interface, pipeline, and genebuild systems. To external users the API
may be useful to automate the extraction of particular data, to customize the Ensembil to
fulfill a particular purpose, or to store their own data in Ensembl. As a brief introduction

this tutorial focuses primarily on the retrieval of data from the Ensembl databases.

It is important to note that the Perl API is only one of many ways of accessing the data
stored in Ensembl. Additionally there is Java API, the genome browser web interface,
and the EnsMart system. If you are a Java programmer then the Java API is likely to be
of more interest to you. Similarly, EnsMart may be a more appropriate tool for certain
types of data mining.

Other Sources of Information

The Perl API has a decent set of code documentation in the form of PODs (Plain Old
Documentation). This is documentation is mixed in with the actual code, but can be
automatically extracted and formatted using some software tools. One version of this
documentation is available at: www.ensembl.org/Docs/Pdoc/

If you have your Perl5LIB environment variable set correctly (see the section onSetting
Up the Environment) you can use the command perldoc. For example the following
command will bring up some documentation about the Slice class and each of its
methods:

perl doc Bio::EnsEMBL:: Slice

For additional information you can contact ensembl-dev, the EnsEMBL development
mailing list (see www.ensembl.org/Docs/Lists/).

Perl

The EnsEMBL Perl API is compatible with Perl versions 5.6.0 and later. You can tell
what version of Perl you are using by typing per| -v. This will give you version
information like the following:

perl -v

This is perl, v5.6.0 built for i386-1inux

Obtaining the Code

Before you start, you will need to have the relevant Ensembl and BioPerl modules
installed. These are :

bioperl-1.2
ensembl

Instructions on how to install these perl modules are contained on the EnsEMBL website
www.ensembl.org. Basically, you need to do the following steps (in both cases below we
are using cvs to get the code, which is much better than ftp as we are getting the latest
bug fixes). Notice the - r flag to the cvs commands. These indicate the branch of each
repository to get out. Branches are stable versions of the code. In this example we are
obtaining branch-1-2 of BioPerl and branch-ensembl-20 of the EnsEMBL core. The
branch of EnsEMBL code that you use should correspond to the version of the
EnsEMBL database that you are using. For example if you are using the database
homo_sapiens_core_20_34c you should use branch-ensembl-20.

To obtain the BioPerl code perform the following CVS commands:

cvs -d :
pserver:cvs@vs. bi operl.org:/hone/ repository/bioperl [ogin
when pronpted, the password is 'cvs'

cvs -d :
pserver:cvs@vs. bi operl . org:/ hone/ repository/ bioperl
checkout -r branch-1-2 bioperl-live

To obtain the EnsEMBL API code perform these CVS commands, substituting ‘20" with
the appropriate branch number:

Icvs_ -d :pserver:cvsuser @vsro. sanger. ac. uk: / cvsr oot/ CVSnast er
ogin

when pronpted, the password i s CVSUSER

cvs -d :pserver:cvsuser @vsro. sanger. ac. uk: / cvsr oot/ CVSnast er
checkout -r branch-ensenbl - 20 ensenbl

Database Access

If you don't have, or don't want to install, the Ensembl database locally (which is all you
will need to complete the tutorial exercises) you can point your scripts at a publicly
available one at the Sanger Centre. Use the following fields in your scripts (where X_Y
is the latest version of the database, for example 20_34c):

host ensenbl db. ensenbl . org
dbnane homo_sapi ens_core X Y
user anonynous

DBl and DBI::mysqd|l

Unless you already have them installed, before you can begin you will need to install the
Perl DBI and DBI::mysgl modules from the CPAN (www.cpan.org). See the CPAN site
for instructions on how to do this.

Setting up the Environment

Perl needs to know the location of the BioPerl and EnsEMBL API modules in order for
any scripts that you write to work. You can do this by setting the PERL5LIB
environment variable from your shell. Assuming that you have placed the source in an
'src' directory under your home directory the following tcsh/csh commands could be

used:

set env PERL5LI B ${PERL5LI B}: ${ HOVE}/ src/ bi operl -1ive
setenv PERL5LI B ${ PERL5LI B} : ${ HOVE} / sr ¢/ ensenbl / nodul es

The same example in bash would be:

export PERL5LI B=${ PERL5LI B} : ${ HOVE}/ src/ bi oper| -1ive
export PERL5LI B=${ PERL5LI B} : ${ HOVE}/ sr c/ ensenbl / nodul es

Alternatively you can use the perl pragma ‘use lib' at the top of your scripts to point to
the location of the perl modules you wish to use.

use lib '/ ny/nodul es/directory/ensenbl/ modul es' ;
use lib '/ny/nodul es/ directory/bioperll.2/";

Code Conventions

Several naming convention are applied throughout the API. Learning these conventions
will aid in your understanding of the code.

Variable names are underscore separated all-lowercase words.
$slice, @xons, %exon_hash, $database_adapt or
Class names are mixed-case words that begin with capital letters.

GeneAdapt or, Exon, Slice, DBAdaptor

Method names are entirely lowercase, underscore separated words. Class names in
the method are an exception to this convention and these words begin with an
uppercase letter and not be underscore separated words. The word dblID is another
exception which denotes the unique database identifier of an object. No method names
begin with a capital letter, even if they refer to a class.

fetch_all _by Slice, get _all _Genes, traslation, fetch_by dblD

Method names that begin with a an underscore ' ' are intended to be private and should
not be called externally from the class in which they are defined.

ObjectAdaptors are responsible for the creation of various objects. The adaptor should
be named after the object it creates, and the methods responsible for the retrieval of
these objects should all start with 'fetch'. All of the fetch methods should return only
objects that the adaptor creates. Therefore the object name is not required in the
method name. For example, all fetch methods in the GeneAdaptor return Gene objects.
Non-adaptor methos generally avoid the use of the word 'fetch'.

fetch_all _by Slice, fetch by dblD, fetch by region

Methods which begin with 'get_all' or ‘fetch_all' return list references. Many methods in
Ensembl pass lists by reference, rather than by value for the purposes of efficiency.
This takes some getting used to, but it results in more efficient code, especially when
very large lists are passed around (as they often are in Ensembl).

get _all _Transcripts, fetch_ all _by Slice, get_all_Exons
The following examples demonstrate some of perl's list reference syntax. Note that you
do not need to understand the API concepts in this example. The important thing to
note is the language syntax; the concepts will be described later.

#fetch all clones fromthe slice adaptor (returns listref)

ny $clones_ref = $slice_adaptor->fetch all('clone');

#if you want a copy of the referenced array, do this:
ny @l ones = @cl ones_ref;

#get the first clone fromthe list via the reference:
ny $first_clone = $clones_ref->[0];

#anot her way of getting the sane thing:
($first_clone) = @cl ones_ref;

#iterate through all of the genes on a clone
foreach ny $gene (@ $first_clone->get_all _Genes()}) {
print $contig->stable_id() . "\n";

#anot her way of doing the sane thing:
ny $genes = $first_clone->get_all_Genes();
foreach my $contig (@genes) {

print $contig->name . "\n";

#retrieve a single Cone object (not a listref)

$cl one = $slice_adaptor->fetch_by region('clone', 'AL031658.11");
#no dereferenci ng needed:

print $slice->seq_region_name() . "\n";

Connecting to the Database - The DBAdaptor

All data used and created by Ensembl is stored in a MySQL relational database. If you
want to access this database the first thing you have to do is to connect to it. This is
done behind the scenes by Ensembl using the DBI module. You will need to know three
things before you start :

host the hostname where the Ensembl database lives
dbname the name of the Ensembl database
user the username to access the database

First, we need to import any Perl modules that we will be using. Since we need a
connection to an Ensembl database we first have to import the DBAdaptor modules that
we use to establish this connection. Almost every Ensembl script that you will write will
contain a 'use' statement like the following:

use Bi o:: EnsEMBL: : DBSQ.: : DBAdapt or ;

Then we set the important variables telling Perl where and what your database is:

my $host = 'ensenbl db. ensenbl . org';
ny $user = 'anonynous';
ny $dbname = ' hono_sapi ens_core_20_34c';

Now we can make a database connection:

ny $db = new Bi o:: EnsEMBL: : DBSQL: : DBAdapt or (- host => $host,
- user => $user,
-dbname => $dbnane);

We've made a connection to an Ensembl database and passed parameters in using the
-attribute => 'somevalue' syntax present in many of the Ensembl object constructors.
Formatted correctly, this syntax lets you see exactly what arguments and values you are
passing.

In addition to the parameters provided above the optional port, driver and pass
parameters can be used specify the TCP port to connect via, the type of database driver

to use, and the password to use respectively. These values have sensible defaults and
can often be omitted.

Object Adaptors

Before we launch into the ways the API can be used to retrieve and process data from
the Ensembl databases it is best to mention the fundamental relationships the Ensembl
objects have with the database.

The EnsEMBL API allows manipulation of the database data through various objects.
For example, some of the more heavily used objects are the Gene, Slice and Exon
objects. More details of how to effectively use these objects will be covered later.
These objects are retrieved and stored in the database through the use of object
‘adaptors'. The object adaptors have internal knowledge of the underlying database
schema and use this knowledge to fetch, store and remove objects (and data) from the
database. This way you can write code and use the Ensembl API without having to
know anything about the underlying databases you are using. The database adaptor
(that we obtained by connecting to our database, in the previous section) is a special
adaptor which has the responsibility of maintaining the database connection and
creating other object adaptors.

Object adaptors are obtained from the main database adaptor via a suite of methods
with the naming convention "get_ObjectAdaptor". To obtain a SliceAdaptor or a
GeneAdaptor (which retrieve Slice and Gene objects) do the following:

ny $gene_adapt or = $db- >get _GeneAdapt or () ;
ny $slice_adaptor = $db->get_SliceAdaptor();

Don't worry if you don't immediately see how useful this could be. Just remember that
you don't need to know anything about how the database is structured, but you can
retrieve the necessary data (neatly packaged in objects) by asking for it from the correct
adaptor. Throughout the rest of this document we are going to work through the ways
the Ensembl objects can be used to derive the information you want.

Slices

A Slice object represents a single continuous region of a genome. Slices can be used
to obtain sequence, features or other information from a particular region of interest. To
retrieve a Slice it is first necessary to get a SliceAdaptor:

ny $slice_adaptor = $db->get_SliceAdaptor();

The SliceAdaptor provides several ways to obtain Slices, but we will start with the
fetch_by region method which is the most commonly used. This method takes
numerous arguments but most of them are optional. In order, the arguments are:
coord_system_name, seq_region_name, start, end, strand, coord_system_version The
following are several examples of how to use the fetch_by_ region method:

#obtain a slice of the entire chronpbsonme X
ny $slice = $slice_adaptor->fetch_by_region('chronosone',
1 xl) ;
#obtain a slice of the entire clone AL359765. 6
$slice = $slice_adaptor->fetch_by region('clone',' AL359765.6');

#obtain a slice of an entire NT contig
$slice = $slice_adaptor->fetch_by region(' supercontig',
"' NT_011333");

#obtain a slice of 1-2MB of chronpsone 20
$slice = $slice_adaptor->fetch_by region(' chronmosone', '20',
le6, 2e6);

Another useful way to obtain a Slice is with respect to a gene:

my $slice =
$slice_adaptor->fetch_by gene_stabl e id(' ENSG00000099889",
5000) ;

This will return a Slice that contains the sequence of the gene specified by its stable
Ensembl id. It also returns 5000bp of flanking sequence at both the 5' and 3' ends,
which is useful if you are interested in the environs that a gene inhabits. You needn't
have the flanking sequence it you don't want it - in this case set the number of flanking
bases to 0 or omit the second argument entirely.

To obtain sequence from a slice the seq or subseq methods can be used:

ny $sequence = $slice->seq();
print “$sequence\n”;

$sequence = $slice->subseq(100, 200);

We can query the Slice for information about itself:

#coord_systen() returns a Bio:: EnsEMBL: : Coor dSyst em obj ect
ny $coord_sys $slice->coord_systen()->nane();
ny $seq_region $slice->seq_region_nane();

ny $start ;$slice->start();
ny $end = $slice->end();
ny $strand = $slice->strand();

print “Slice: $coord_sys $seq_region $start-$end ($strand)\n”;

Many object adaptors can provide a set of features which overlap a slice. The Slice
itself also provides a means to obtain features which overlap its region. The following
are two ways to obtain a list of genes which overlap a Slice:

ny @enes = @ $gene_adaptor->fetch _all by Slice($slice)};

#anot her way of doing the sane thing:
@enes = @ $slice->get_all_Genes()};

Features

Features are objects in the database which have a defined location on the genome. All
features in Ensembl inherit from the Bio::EnsEMBL::Feature class and have the
following location defining attributes: start, end, strand, slice.

In addition to locational attributes all features have internal database identifiers
accessed via the method dbID. All feature objects can be retrieved from their
associated object adaptors using a Slice object or the feature's internal identifer (dbID).
The following example illustrates how Transcript features and DnaDnaAlignFeature
features can be obtained from the database. All features in the database can be
retrieved in similar ways from their own object adaptors.

ny $tr_adaptor = $db->get_Transcri pt Adaptor();
ny $daf adaptor = $db->get DnaAl i gnFeat ur eAdapt or () ;

#get a slice of chr20 10MB-11MB
ny $slice = $slice_adaptor->fetch_by regi on(' chronosone', '20',
10e6, 1le6);

#fetch all of the transcripts overlapping chr20 10-11MB
ny $transcripts = $tr_adaptor->fetch_all by Slice($slice);
foreach my $tr (@transcripts) {

ny $dblD = $tr->dbl D();
ny $start = $tr->start()
ny $end = $tr->end();
ny $strand = $tr->strand()

ny $stable id = $tr->stable id
print “Transcript $stable id |

}

#fetch all of the dna-dna alignnments overl ap
ny $dafs = $daf _adaptor->fetch_all_by_Slice(
foreach ny $daf (@dafs)

();
$dbl D] $start-$end($strand)\n”;

pi ng chr20 10-11MB
$slice);

ny $dbl D = $daf - >dbl D() ;

ny $start = $daf->start ();

ny $end = $daf - >end();

nmy $strand = $daf->strand();
ny $hsegnanme = $daf - >hseqnarre()

pr| nt “DNA Alignment S$hseqnane [$de D] $start-$end($strand)\n”;

#fetch a transcript by its internal identifier
ny $transcript = $tr->adaptor->fetch_by dbl D(100);

#fetch a dnaAlignFeature by its internal identifiers
ny $dna_al ign_feat = $daf _adaptor->fetch_by dbl D(100);

Genes, Transcripts, Exons

Genes, Exons and Transcripts are also features and can be treated in the same way as
any other feature within Ensembl. A Transcript in Ensembl is a grouping of Exons. A
Gene in Ensembl is a grouping of Transcripts which share any overlapping (or partially
overlapping) Exons. Transcripts also have an associated Translation object which
defines the UTR and and CDS composition of the Transcript. Introns are not defined
explicitly but can be calculated from the 'negative space' between Exons.

Like all Ensembl features the start of an Exon is always less than or equal to the end of
the Exon, regardless of the strand it is on. The start of the Transcript is the start of the
first Exon of a forward strand Transcript or the start of the last Exon of a reverse strand
Transcript. The start and end of a Gene are defined to be the lowest start value of it's
Transcripts and the highest end value respectively.

Genes, Translations, Transcripts and Exons all have stable identifiers. These are
identifiers that are assigned to Ensembl's predictions, and maintained in subsequent
releases. For example, if a Transcript (or a sufficiently similar Transcript) is re-predicted
in a future release then it will be assigned the same stable identifier as its predecessor.

The following is an example of the retrieval of a set of Genes, Transcripts and Exons:

sub feature2string {

ny $f = shift;

nmy $stable_id = $f ->stable_id();

ny $seq_regi on $f - >sli ce- >seq_r egi on_nane() ;
ny $start = $f- >start()

ny $end = $f >end() ;

ny $strand = $f->st rand() ;

return “$stable_id : $seq_region: $start-$end ($strand)”

$sli ce_adapt or = $db->get_Sli ceAdaptor();

$slice = $slice adaptor->fetch by chr_start _end(' X, 1e6, 10e6);

foreach my $gene (@ $slice->get _all_ GCenes()}) {
ny $gstring = feature2string(3$gene);
print “$gstring\n”;

foreach nmy $trans (@ $gene->get _all _Transcripts()}) {
ny $tstring = feature2string($trans);
print “ $tstring\n”;

foreach ny $exon (@ $trans->get _all _Exons()}) {
ny $estring = feature2string($exon);
print “ $estring\n”;
}
}
}

Translations and ProteinFeatures

Translation objects and peptide sequence can be extracted from a Transcript object. It
is important to remember that some Ensembl transcripts are pseudogenes and have no
translation. The primary purpose of a Translation object is to define the CDS and UTRs
of its associated Transcript object. Peptide sequence is obtained directly from a
Transcript object — not a Translation object as might be expected. The following
example obtains the peptide sequence of a Transcript and the Translation's stable
identifier:

ny $stable_id = ' ENSTO0000044768' ;
ny $transcript_adaptor = $db->get_Transcri pt Adaptor();
ny $transcript =

$transcript _adaptor->fetch by stable id($stable_id;

print $transcript->translation()->stable id(), “\n”";
print $transcript->translate()->seq(), “\'n”;

ProteinFeatures are features which are on an amino acid sequence rather than a
nucleotide sequence. The method get_all_ProteinFeatures can be used to obtain a set
of protein features from a Translation object.

$translation = $transcript->translation();
ny $protein feats = $transl ation->get _all _Protei nFeat ures();

foreach ny $pf (@protein feats) {

ny $l ogi c_nanme = $pf->anal ysi s()->l ogi c_nane();

print $pf->start(), '-', $pf->end(), ' ', $logic_nanme, ' ',
| $pf->interpro_ac(), ' ', $pf->idesc(), "\n";

If only the protein features created by a particular analysis are desired the name of the
analysis can be provided as an argument. To obtain the subset of features which are
considered to be 'domain' features the convenience method get_all DomainFeatures
can be used:

ny $seg feats = $translation->get _all _Protei nFeatures(' Seg');
ny $domai n_feats = $translati on->get _al | _Donmi nFeat ures();

PredictionTranscripts

PredictionTranscripts are the results of ab initio gene finding programs that are stored in
Ensembl. Example programs include Genscan and SNAP. Prediction transcripts have
the same interface as normal transcripts and thus they can be used in the same way.

ny $ptranscripts = $slice->get_all _PredictionTranscripts;

foreach nmy $ptrans (@ptranscripts) {
my $exons = $ptrans->get_al | _Exons();
ny $type = $ptrans->anal ysi s->logic nan’e()
print "$type prediction has ".scal ar(@exons) " exons\ n";

foreach my $exon (@ﬁexons) {
print $exon >start
$exon- >end Lot
$exon->strand . " "
$exon- >phase ."\n";

External References

EnsEMBL cross references its genes, transcripts and translations with identifiers from
other databases. A DBEntry object represents a cross reference and is often refered to
as an xref. The following code snippet retrieves and prints DBEntries for a gene, its
transcripts and its translations:

#define a hel per subroutine to print DBEnties
sub print_DBEntries {
nmy $db_entries = shift;
foreach ny $dbe (@db_entri es) {
print $dbe- >dbname(),“ - “, $dbe->display_id(),“\n";

}

print “GENE “, $gene->stable_id(), “\n";
print_DBEntries($gene->get_all_DBEntries());

foreach ny $trans(@ $gene->get _all _Transcripts()}){

print “TRANSCRI PT “, $trans->stable_id(), “\n”;
print_DBEntries($trans->get_all_DBEntri es())
#wat ch out: pseudogenes have no translation
if($trans->translation())

ny $transl = $trans->translation();

print “TRANSLATION “, $transl - >st abl e_i d(),”\n

print_DBEntries($transl->get_all_DBEntri es());

Often it is useful to obtain all of the DBEntries associated with a gene and its associated
transcripts and translation as in the above example. As a shortcut to calling

get_all_ DBEntries on all of the above objects the get_all_DBLinks method can be used
instead. The above example could be shortened by using the following:

print_DBEntries($gene->get_all _DBLi nks());

Coordinates

We have already discussed the fact that Slices and features have coordinates, but we
have not defined exactly what these coordinates mean.

Ensembl, and many other bioinformatics applications, use inclusive coordinates which
start at 1. The first nucleotide of a DNA sequence is 1 and the first amino acid of a
peptide sequence is also 1. The length of a sequence is defined asend - start + 1.

Slice coordinates are relative to the start of the underlying DNA sequence region. The
strand of the Slice represents orientation relative to the default orientation of the

sequence region. By convention the start of the Slice is always less than or equal to the
end, and does not vary with its strandedness. Most Slices you will encounter will have a
strand of 1, and this is what we will consider in our examples. It is legal to create a Slice
which extends past the boundaries of a sequence region. Sequence retrieved from
regions where the sequence is not defined will consist of Ns.

All features retrieved from the database have an associated Slice (accessible via the
slice method). A feature's coordinates are always relative to this associated Slice. I.e.
the start and end define the feature's position relative to the start of the Slice (or the end
of the Slice if it is a negative strand slice), and the strand of the feature is relative to the
strand of the Slice. By convention the start of a feature is always less than or equal to
the end the feature regardless of its strand. It is legal to have features with coordinates
which are less than one or greater than the length of the slice. Such cases are common
when features that partially overlap a slice are retrieved from the database.

Consider, for example, the following figure of two features associated with a Slice:

| ::::::::::::::::::::::::::::::::| (Slice)

—

1

1

1

]

1

1

1

1
[—
~~

eature B)

A CTAAATTCT T G (Sequence)
1 2 3 45 6 7 8 9 10 11 12 13

The Slice itself will has a start of 2, an end of 13, and a length of 12. Note that the
underlying sequence region only has a length of 11. Retrieving the sequence of such a
slice would give the following string: CTAAATCTTGNN. Note that undefined region of
sequence is represented by Ns. Feature A has a start of 0, an end of 2, and a strand of
1. Feature B has a start of 3, an end of 6, and a strand of -1.

Coordinate Systems

Sequences stored in Ensembl are associated with coordinate systems. What the
coordinate systems are varies from species to species. For example, the homo_sapiens
database has the following coordinate systems: contig, clone, supercontig,
chromosome. Sequence and features may be retrieved from any coordinate system
despite the fact they are only stored internally in a single coordinate system. The
database stores the relationship between these coordinate systems and the API
provides means to convert between them. The API has a CoordSystem object and and
object adaptor, however, these are most often used internally. The following example
fetches a 'chromosome' coordinate system object from the database:

ny $csa = $db- >get Coor dSyst emAdapt or () ;
ny $cs = $csa->fetch_by name(' chronobsone');

print “Coord system $cs->nane(). " “.$cs->version.”\n";

A coordinate system is uniquely defined by its name and version. Most coordinate
systems do not have a version, and the ones that do have a default version. Therefore,
it is usually sufficient to use only the name when requesting a coordinate system. For
example, 'chromosome' coordinate systems have a version which is the assembly that
defined the construction of the coordinate system. The version of homo_sapiens
chromosome coordinate system might be 'NCBI33' or 'NCBI34'.

Slice objects have an associated CoordSystem object and a seq_region_name that
uniquely defines the sequence that they are positioned on. You may have noticed that
the coordinate system of the sequence region was specified when obtaining a Slice in

the fetch_by region method. Similarly the version may also be specified (though it can
almost always be omitted):

$slice = $slice_adaptor->fetch_by region(' chronmosone', 'X,
le6, 10e6, 'NCBI33');

Sometimes it is useful to obtain full Slices of every sequence in a given coordinate
system, which may be done using the SliceAdaptor method fetch_all:

@hronosones = @ $slice_adaptor->fetch_all (' chronosone')};
@l ones = @$slice_adaptor->fetch_all('clone')};

Now suppose that you wish to write code which is independent of the species used. Not
all species have the same coordinate systems; the available coordinate systems
depends on the style of assembly used for that species (WGS, clone-based, etc.). You
can obtain the list of available coordinate systems for a species using the
CoordSystemAdaptor and there is also a special pseudo-coordinate system named
‘toplevel'. The 'toplevel' coordinate system is not a real coordinate system, but is used
to refer to the highest level coordinate system in a given region. The 'toplevel'
coordinate system is particulary useful in genomes that are incompletely assembled.
For example, the latest zebrafish genome consists of a set of assembled chromosomes,
and a set of supercontigs that are not part of any chromosome. In this example, the
'toplevel' coordinate system sometimes refers to the chromosome coordinate system
and sometimes to the supercontig coordinate system depending on the region it is used
in.

#list all coordinate systens in this database:
ny @oord_systens = @$csa->fetch_all()};
foreach $cs (@oord_systens)
print “Coord system *“.$cs->nane().“ “.$cs->version.”\n";

#get all slices on the highest coordinate system
ny @lices = @$slice_adaptor->fetch_all ('toplevel')};

Transform

Features on a Slice in a given coordinate system may be moved to another slice in the
same coordinate system or to another coordinate system entirely. This is useful if you
are working with a particular coordinate system but you are interested in obtaining the
features coordinates in another coordinate system.

The method transform can be used to move a feature to any coordinate system which is
in the database. The feature will be placed on a Slice which spans the entire sequence
that the feature is on in the requested coordinate system.

if(ny $new feature = $feature->transforn(’'clone')) {
print “Feature's clonal position is:”,
$new feature->slice->seq_region_nane(), ' ',
$new_feature->start(),'-', $feature->end()," (',
$new feature->strand(), “)\n";
} else {
print “Feature is not defined in clonal coordinate systemn”;

The transform method returns a copy of the original feature in the new coordinate
system, or undef if the feature is not defined in that coordinate system. A feature is
considered to be undefined in a coordinate system if it overlaps an undefined region or if
it crosses a coordinate system boundary. Take for example the tiling path relationship
between chromosome and contig coordinate systems:

| ~~~~~~~ | (Feature A) | ~~~~| (Feature B)

Both Feature A and Feature B are defined in the chromosomal coordinate system
described by the tiling path of contigs. However, Feature A is not be defined in the
contig coordinate system because it spans both Contig 1 and Contig 2. Feature B, on
the other hand, is still defined in the contig coordinate sytem.

The special 'toplevel' coordinate system can also be used in this instance to move the
feature to the highest possible coordinate system in a given region:

if(my $new feature = $feature—>transforn’(' toplevel')) {
print “Feature's toplevel position is:
$new_f eat ure->slice->coord system >nanme(), ' ',
$new feature->slice- >seq regi on_nanme(), '
$new feature->start(), , $f eat ur e- >end() (',
$new_f eat ur e- >st rand() “)\ n";
} else {
print “Feature is not defined in toplevel coordinate systemn”;

Transfer

Another method that is available on all Ensembl features is the transfer method. The
transfer method is similar to the perviously describedtransform method, but rather than
taking a coordinate system argument it takes a Slice argument. This is useful when you
want a feature's coordinates to be relative to a certain region. Calling transform on the
feature will return a copy of the which is shifted onto the provided Slice. If the feature
would be placed on a gap or across a cooridinate system boundary, then undef is
returned instead. It is illegal to transfer a feature to a Slice on a sequence region which
is cannot be placed on. For example, a feature which is on chromosome X cannot be
transferred to a Slice on chromosome 20 and attempting to do so will raise an
exception. Itis legal to transfer a feature to a Slice on which it has coordinates past the
slice end or before the slice start. The following example illustrates the use of the
transfer method:

$slice = $slice_adaptor->fetch_by region(' chronpbsone',"' 2",
le6, 2e6);

$new slice = $slice_adaptor->fetch_by_region('chronosone, '2',
1_500_000, 2_000 000)

foreach $sf (@ $slice->get_all _Si npl eFeat ures(' eponl neTSS)}) {
print “Before: “, $sf->start, '-', $sf->end, “\n”
$new feature = $feature- >transfer($new_s| [ce)
i f(!$new feature)
print “Could not transfer feature\n”;
} else {
print “After: “, $sf->start, '-', $sf->end, “\n";

In the above example a Slice from another coordinate system could also have been
used, provided you had an idea about what sequence region the features would be
mapped to.

Project

When moving features between coordinate systems it is usually sufficient to use the
transfer or transform methods. Sometimes, however, it is necessary to obtain
coordinates in a another coordinate system even when a coordinate system boundary is
crossed. Even though the feature is considered to be undefined in this case, he
feature's coordinates in can still be obtained in the requested coordinate system using
the project method.

Both Slices and features have their own project methods, which take the same
arguments and have the same return values. The project method takes a coordinate
system name as an argument and returns a reference to a list of [start,end,slice] triplets.
The start and end represent the part of the feature or Slice that is used to form that part
of the projection. The Slice represents part of the region that the slice or feature was
projected to. The following example illustrates the use of the project method on a
feature. The project method on a Slice can be used in the same way. As with the
Feature transform method the pseudo coordinate system ‘toplevel' can be used to
indicate you wish to project to the highest possible level.

$proj ection = $feature->project('clone');

ny $seq_region $f eat ur e- >seq_r egi on_nane();

nmy $start ;$feature—>start();
ny $end = $f eature->end();
ny $strand = $feature->strand();

print “Feature at: $seq_region $start-$end ($strand) projects *
ut O\ nu ,

foreach nmy $segnent (@projection) {
ny ($fromstart, $fromend, $to_slice) = @segnent;
ny $to_seq region $to_slice->seq region_nane();
ny $to_start $to_slice->start();

ny $to_end $to_slice->end();
ny $to_strand $to_slice->strand();
print © $to seq region $to start-$to _end ($to_strand)\n";

