Skip to content
Snippets Groups Projects
Commit 14711701 authored by Alessandro Vullo's avatar Alessandro Vullo
Browse files

[ENSCORESW-1117]. Polyploidy test database extracted from Triticum aestivum (EG25).

parent e683f1bd
No related branches found
No related tags found
No related merge requests found
Showing
with 423 additions and 0 deletions
178 2014-11-20 11:21:58 trf \N \N \N trf 4.0 /nfs/panda/ensemblgenomes/external/bin/trf 2 5 7 80 10 40 500 -d -h Bio::EnsEMBL::Analysis::Runnable::TRF \N trf tandem_repeat
100 2013-08-23 16:08:26 tgac_pred_supp7 \N \N \N \N \N \N \N \N \N \N \N
177 2014-11-20 11:21:58 dust \N \N \N dustmasker \N /nfs/panda/ensemblgenomes/external/bin/dustmasker \N Bio::EnsEMBL::Analysis::Runnable::DustMasker \N dust repeat_region
101 2013-08-23 16:08:26 tgac_pred_supp17 \N \N \N \N \N \N \N \N \N \N \N
119 2013-11-07 15:48:01 mips_taestivum \N \N \N \N \N \N \N \N \N \N \N
187 2014-11-26 14:53:56 pfam Pfam 27.0 \N pfam \N \N \N \N \N \N \N
195 2014-11-26 14:54:02 ncoils ncoils \N \N ncoils \N \N \N \N \N \N \N
186 2014-11-26 14:53:54 hmmpanther PANTHER 9.0 \N hmmpanther \N \N \N \N \N \N \N
190 2014-11-26 14:53:59 prints PRINTS 42.0 \N prints \N \N \N \N \N \N \N
200 2014-11-26 14:54:06 interpro2pathway InterPro2Pathway \N \N interpro2pathway \N \N \N \N \N \N \N
196 2014-11-26 14:54:03 signalp SignalP \N \N signalp \N \N \N \N \N \N \N
191 2014-11-26 14:53:59 scanprosite Prosite_patterns 20.105 \N scanprosite \N \N \N \N \N \N \N
45 0000-00-00 00:00:00 wheat_snp_a \N \N \N \N \N \N \N \N \N \N \N
46 0000-00-00 00:00:00 wheat_snp_b \N \N \N \N \N \N \N \N \N \N \N
136 2013-11-16 16:36:35 xrefexoneratedna \N \N \N \N \N \N \N \N \N \N \N
137 2013-11-16 16:36:35 xrefexonerateprotein \N \N \N \N \N \N \N \N \N \N \N
138 2013-11-16 16:49:20 xrefchecksum \N \N \N \N \N \N \N \N \N \N \N
140 2014-03-18 00:00:00 ncrna_eg \N \N \N \N \N \N \N \N \N ensemblgenomes gene
141 2014-05-09 10:51:51 ena ena \N \N \N \N \N \N \N \N ena gene
142 2014-05-09 10:51:51 gl_xref gl_xref \N \N \N \N \N \N \N \N gl_xref \N
143 2014-05-09 10:51:52 gl_name_xref gl_name_xref \N \N \N \N \N \N \N \N gl_name_xref \N
145 2014-05-09 10:52:01 ena_rna ena \N \N \N \N \N \N \N \N ena_rna gene
146 2014-05-09 10:52:02 ena_gene ena \N \N \N \N \N \N \N \N ena_gene feature
147 2014-05-09 10:52:02 ena_exon ena \N \N \N \N \N \N \N \N ena_exon feature
148 2014-11-25 00:00:00 percentgc \N \N \N \N \N \N \N \N \N \N \N
149 2014-05-09 00:00:00 longnoncodingdensity \N \N \N \N \N \N \N \N \N \N \N
150 2014-11-25 00:00:00 pseudogenedensity \N \N \N \N \N \N \N \N \N \N \N
151 2014-11-25 00:00:00 shortnoncodingdensity \N \N \N \N \N \N \N \N \N \N \N
152 2014-11-25 00:00:00 codingdensity \N \N \N \N \N \N \N \N \N \N \N
153 2014-11-25 00:00:00 percentagerepeat \N \N \N \N \N \N \N \N \N \N \N
154 2014-05-09 15:05:36 ena_repeat ena \N \N \N \N \N \N \N \N ena_repeat repeat
155 2014-05-09 15:05:36 ena_repeat_direct ena \N \N \N \N \N \N \N \N ena_repeat_direct repeat
156 2014-12-02 00:00:00 snpdensity \N \N \N \N \N \N \N \N \N \N \N
157 2014-07-17 17:46:20 go_projection GO \N \N GOProjection.pm \N \N \N \N \N \N \N
183 2014-11-26 14:53:48 blastprodom ProDom 2006.1 \N blastprodom \N \N \N \N \N \N \N
189 2014-11-26 14:53:58 pirsf PIRSF 2.84 \N pirsf \N \N \N \N \N \N \N
185 2014-11-26 14:53:50 hamap HAMAP 201311.27 \N hamap \N \N \N \N \N \N \N
192 2014-11-26 14:54:00 smart Smart 6.2 \N smart \N \N \N \N \N \N \N
197 2014-11-26 14:54:04 tmhmm Tmhmm \N \N tmhmm \N \N \N \N \N \N \N
184 2014-11-26 14:53:50 gene3d Gene3D 3.5.0 \N gene3d \N \N \N \N \N \N \N
188 2014-11-26 14:53:57 pfscan Prosite_profiles 20.105 \N pfscan \N \N \N \N \N \N \N
198 2014-11-26 14:54:05 seg Seg \N \N seg \N \N \N \N \N \N \N
194 2014-11-26 14:54:02 tigrfam TIGRfam 13.0 \N tigrfam \N \N \N \N \N \N \N
199 2014-11-26 14:54:06 interpro2go InterPro2GO \N \N interpro2go \N \N \N \N \N \N \N
193 2014-11-26 14:54:02 superfamily Superfamily 1.75 \N superfamily \N \N \N \N \N \N \N
176 2014-11-19 15:16:28 iwgsc \N \N \N \N \N \N \N \N \N \N \N
182 2014-11-26 14:00:43 xrefuniparc \N \N \N \N \N \N \N \N \N \N \N
180 2014-11-21 13:43:55 repeatmask repbase 20140131 /nfs/panda/ensemblgenomes/external/RepeatMasker/Libraries/RepeatMaskerLib.embl RepeatMasker 3.3.0 /nfs/panda/ensemblgenomes/external/bin/RepeatMasker -nolow -s -gccalc -species "Triticum aestivum" Bio::EnsEMBL::Analysis::Runnable::RepeatMasker \N repeatmasker repeat_region
181 2014-11-23 19:32:29 repeatmask_trep custom \N /nfs/panda/ensemblgenomes/external/data/repeats_libraries/trep/trep.nr RepeatMasker 3.3.0 /nfs/panda/ensemblgenomes/external/bin/RepeatMasker -nolow -s -gccalc -lib "/nfs/panda/ensemblgenomes/external/data/repeats_libraries/trep/trep.nr" Bio::EnsEMBL::Analysis::Runnable::RepeatMasker \N repeatmasker repeat_region
178 <a rel="external" href="http://nar.oxfordjournals.org/cgi/content/full/27/2/573?maxtoshow=&amp;HITS=10&amp;hits=10&amp;RESULTFORMAT=1&amp;author1=Benson&amp;andorexacttitle=and&amp;andorexacttitleabs=and&amp;andorexactfulltext=and&amp;searchid=1&amp;FIRSTINDEX=0&amp;sortspec=relevance&amp;fdate=1/1/1999&amp;tdate=12/31/1999&amp;resourcetype=HWCIT">Tandem Repeats Finder</a> locates adjacent copies of a pattern of nucleotides. Tandem repeats (TRF) 1 \N
177 Dust is a program that identifies low-complexity sequences (regions of the genome with a biased distribution of nucleotides, such as a repeat). The Dust module is widely used with BLAST to prevent 'sticky' regions from determining false hits. Low complexity (Dust) 1 \N
101 <a href="http://www.ebi.ac.uk/~guy/exonerate/">Exonerate</a> alignments (coverage >=95%, %id >= 94%) of predicted ORFs assembled from <i>Triticum aestivum</i> (bread wheat) public datasets. Supplied by <a href="http://www.tgac.ac.uk">The Center for Genome Analysis</a> as part of the <a href="http://maswheat.ucdavis.edu/Transcriptome/">Triticeae-CAP</a> project. Published as supplemental dataset 7, in <a href="http://genomebiology.com/content/14/6/R66">Krasileva et al.</a>, PMID: <a href="http://www.ncbi.nlm.nih.gov/pubmed/23800085">23800085</a>. T. aestivum RNA-seq alignment 1 {'label_key' => '[biotype]', colour_key => '[biotype]', 'default' => {'MultiTop' => 'gene_label', 'contigviewbottom' => 'transcript_label', 'MultiBottom' => 'collapsed_label', 'contigviewtop' => 'gene_label', 'cytoview' => 'gene_label', 'alignsliceviewbottom' => 'as_collapsed_label' }, name => 'T. aestivum RNA-seq alignments', caption => 'T. aestivum RNA-seq alignments', multi_name => 'T. aestivum RNA-seq alignments'}
186 HMM-Panther families PANTHER 1 {'type' => 'domain'}
195 Prediction of coiled-coil regions in proteins is by <a rel="external" href="http://www.sciencemag.org/cgi/reprint/252/5009/1162">Ncoils</a>. Coiled-coils (Ncoils) 1 \N
184 Gene3D analysis as of interpro_scan.pl Gene3D 1 {'type' => 'domain'}
188 Protein domains and motifs from the <a rel="external" href="http://www.ebi.ac.uk/ppsearch/">PROSITE</a> profiles database are aligned to the genome. PROSITE profiles 1 {'type' => 'domain'}
198 Identification of peptide low complexity sequences by <a rel="external" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6TFV-44PXMF3-45&amp;_user=776054&amp;_coverDate=06%2F30%2F1993&amp;_rdoc=6&amp;_fmt=high&amp;_orig=browse&amp;_srch=doc-info(%23toc%235236%231993%23999829997%23279143%23FLP%23display%23Volume)&amp;_cdi=5236&amp;_sort=d&amp;_docanchor=&amp;_ct=13&amp;_acct=C000042238&amp;_version=1&amp;_urlVersion=0&amp;_userid=776054&amp;md5=ac6f98882f2c6626643118367fb28cad">Seg</a>. Low complexity (Seg) 1 \N
187 Protein domains and motifs in the <a rel="external" href="http://nar.oxfordjournals.org/cgi/content/abstract/32/suppl_1/D138?maxtoshow=&amp;HITS=10&amp;hits=10&amp;RESULTFORMAT=1&amp;author1=Bateman&amp;andorexacttitle=and&amp;andorexacttitleabs=and&amp;andorexactfulltext=and&amp;searchid=1&amp;FIRSTINDEX=0&amp;sortspec=relevance&amp;resourcetype=HWCIT">Pfam</a> database. Pfam 1 {'type' => 'domain'}
190 Protein fingerprints (groups of conserved motifs) are aligned to the genome. These motifs come from the <a rel="external" href="http://nar.oxfordjournals.org/cgi/content/abstract/31/1/400?maxtoshow=&amp;HITS=10&amp;hits=10&amp;RESULTFORMAT=1&amp;author1=Attwood&amp;andorexacttitle=and&amp;andorexacttitleabs=and&amp;andorexactfulltext=and&amp;searchid=1&amp;FIRSTINDEX=0&amp;sortspec=relevance&amp;resourcetype=HWCIT">PRINTS</a> database. Prints 1 {'type' => 'domain'}
183 NCBI-BlastP search against ProDom families ProDom 1 {'type' => 'domain'}
189 Protein domains and motifs from the <a rel="external" href="http://pir.georgetown.edu/pirwww/index.shtml">PIR (Protein Information Resource)</a> Superfamily database. PIRSF 1 {'type' => 'domain'}
185 HAMAP is a system, based on manual protein annotation, that identifies and semi-automatically annotates proteins that are part of well-conserved families or subfamilies: the HAMAP families. HAMAP is based on manually created family rules and is applied to bacterial, archaeal and plastid-encoded proteins HAMAP 1 {'type' => 'domain'}
192 Protein domains and motifs in the <a rel="external" href="http://nar.oxfordjournals.org/cgi/content/full/34/suppl_1/D257?maxtoshow=&amp;HITS=10&amp;hits=10&amp;RESULTFORMAT=1&amp;author1=letunic&amp;andorexacttitle=and&amp;andorexacttitleabs=and&amp;andorexactfulltext=and&amp;searchid=1&amp;FIRSTINDEX=0&amp;sortspec=relevance&amp;fdate=1/1/2006&amp;tdate=12/31/2006&amp;resourcetype=HWCIT">SMART</a> database. SMART 1 {'type' => 'domain'}
197 Prediction of transmembrane helices in proteins by <a rel="external" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6WK7-457D7V9-K&amp;_user=776054&amp;_rdoc=1&amp;_fmt=&amp;_orig=search&amp;_sort=d&amp;view=c&amp;_version=1&amp;_urlVersion=0&amp;_userid=776054&amp;md5=a113464457fa5206c6699b9d464cbfee">TMHMM</a>. Transmembrane helices 1 \N
191 Protein domains and motifs from the <a rel="external" href="http://www.ebi.ac.uk/ppsearch/">PROSITE</a> profiles database are aligned to the genome. PROSITE patterns 1 {'type' => 'domain'}
196 Prediction of signal peptide cleavage sites by <a rel="external" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6WK7-4CKBS0M-3&amp;_user=776054&amp;_coverDate=07%2F16%2F2004&amp;_alid=772330061&amp;_rdoc=1&amp;_fmt=high&amp;_orig=search&amp;_cdi=6899&amp;_sort=d&amp;_docanchor=&amp;view=c&amp;_ct=1&amp;_acct=C000042238&amp;_version=1&amp;_urlVersion=0&amp;_userid=776054&amp;md5=9f42be939814b7711268fd414604c9dd">SignalP</a>. Cleavage site (Signalp) 1 {'type' => 'feature'}
200 InterPro2Pathway mapping is obtained from interproScan results. InterPro2Pathway mapping 1 \N
194 Protein domains and motifs in the <a rel="external" href="http://nar.oxfordjournals.org/cgi/content/full/31/1/371?maxtoshow=&amp;HITS=10&amp;hits=10&amp;RESULTFORMAT=1&amp;author1=Haft&amp;andorexacttitle=and&amp;andorexacttitleabs=and&amp;andorexactfulltext=and&amp;searchid=1&amp;FIRSTINDEX=0&amp;sortspec=relevance&amp;fdate=1/1/2003&amp;tdate=12/31/2003&amp;resourcetype=HWCIT">TIGRFAM</a> database. TIGRFAM 1 {'type' => 'domain'}
119 <i>Triticum aestivum</i> genes annotated by <a href="http://mips.helmholtz-muenchen.de/plant/wheat/">MIPS</a> MIPS 1 {'colour_key' => '[biotype]', 'label_key' => '[biotype]','default' => {'MultiTop' => 'gene_label','contigviewbottom' => 'transcript_label','MultiBottom' => 'collapsed_label','contigviewtop' => 'gene_label','alignsliceviewbottom' => 'as_collapsed_label','cytoview' => 'gene_label'}, 'name' => 'Protein-coding Gene (MIPS)', 'caption' => 'Protein-coding Gene (MIPS)', 'multi_name' => 'Protein-coding Gene (MIPS)','key' => 'ensembl'}
45 <i>T. aestivum</i> Inter-homoeologous Variants that differ between the A and D genomes (where the B genome is unknown) Brenchley et al. T. aestivum Genome A/D SNPs 1 \N
46 <i>T. aestivum</i> Inter-homoeologous Variants that are the same between the A and D genomes, but differ in B Brenchley et al. T. aestivum Genome B SNPs 1 \N
136 Sequences from various databases are matched to Ensembl transcripts using <a rel="external" href="http://www.biomedcentral.com/1471-2105/6/31">Exonerate</a>. These are external references, or "Xrefs". DNA match 0 \N
137 match Protein 0 \N
138 Xref mapping based on checksum equivalency Xref checksum 0 \N
100 <a href="http://www.ebi.ac.uk/~guy/exonerate/">Exonerate</a> alignments (coverage >=95%, %id >= 94%) of predicted ORFs assembled from <i>Triticum turgidum</i> (durum wheat) RNA-seq. Supplied by <a href="http://www.tgac.ac.uk">The Center for Genome Analysis</a> as part of the <a href="http://maswheat.ucdavis.edu/Transcriptome/">Triticeae-CAP</a> project. Published as supplemental dataset 7, in <a href="http://genomebiology.com/content/14/6/R66">Krasileva et al.</a>, PMID:<a href="http://www.ncbi.nlm.nih.gov/pubmed/23800085">23800085</a>. T. turgidum RNA-seq alignment 1 {'label_key' => '[biotype]', colour_key => '[biotype]', 'default' => {'MultiTop' => 'gene_label', 'contigviewbottom' => 'transcript_label', 'MultiBottom' => 'collapsed_label', 'contigviewtop' => 'gene_label', 'cytoview' => 'gene_label', 'alignsliceviewbottom' => 'as_collapsed_label' }, name => 'T. turgidum RNA-seq alignments', caption => 'T. turgidum RNA-seq alignments', multi_name => 'T. turgidum RNA-seq alignments)'}
140 ncRNA genes are predicted using a combination of methods depending on their type. tRNAs are predicted using <a href="http://selab.janelia.org/tRNAscan-SE/">tRNAScan-SE</a>, rRNAs using <a href="http://www.cbs.dtu.dk/services/RNAmmer/">RNAmmer</a>, and for all other types, using covariance models and sequences from <a href="http://rfam.sanger.ac.uk/">RFAM</a>. ncRNA 1 {'colour_key' => '[biotype]','caption' => 'ncRNA','label_key' => '[biotype]','name' => 'ncRNA','default' => {'contigviewbottom' =>'transcript_label','contigviewtop' => 'gene_label','cytoview' => 'gene_label'},'key' => 'ncRNA'}
141 Protein coding genes annotated in <a href="http://www.ebi.ac.uk/ena/">ENA</a> Protein coding genes (ENA) 1 {'colour_key' => '[biotype]','caption' => 'Genes','name' => 'Genes','label_key' => '[biotype]','default' => {'MultiTop' => 'gene_label','contigviewbottom' => 'transcript_label','MultiBottom' => 'collapsed_label','contigviewtop' => 'gene_label','cytoview' => 'gene_label','alignsliceviewbottom' => 'as_collapsed_label'},'multi_caption' => 'Genes','key' => 'ena_genes'}
142 Cross-references attached by GenomeLoader GenomeLoader cross-references 1 \N
143 Cross-references attached by GenomeLoader to provide names GenomeLoader name cross-references 1 \N
145 ncRNA genes annotated in <a href="http://www.ebi.ac.uk/ena/">ENA</a> ncRNA genes (ENA) 1 {'colour_key' => '[biotype]','caption' => 'Genes','name' => 'Genes','label_key' => '[biotype]','default' => {'MultiTop' => 'gene_label','contigviewbottom' => 'transcript_label','MultiBottom' => 'collapsed_label','contigviewtop' => 'gene_label','cytoview' => 'gene_label','alignsliceviewbottom' => 'as_collapsed_label'},'multi_caption' => 'Genes','key' => 'ena_genes'}
146 gene feature annotated in ENA gene (ENA) 1 {'multi_name' => 'Genomic features','caption' => 'Genomic features','name' => 'Genomic features','label_key' => '[text_label] [display_label]','key' => 'ena_features'}
147 exon feature annotated in ENA exon (ENA) 1 {'multi_name' => 'Genomic features','caption' => 'Genomic features','name' => 'Genomic features','label_key' => '[text_label] [display_label]','key' => 'ena_features'}
148 Percentage of G/C bases in the sequence. GC content 1 \N
149 Long non-coding gene density as calculated by <a rel="external" href="http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/modules/Bio/EnsEMBL/Production/Pipeline/Production/NonCodingDensity.pm?root=ensembl&view=markup">LongNonCodingDensity.pm</a>. Long non-coding genes (density) 1 \N
150 Pseudogene density as calculated by <a rel="external" href="http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/modules/Bio/EnsEMBL/Pipeline/Production/PseudogeneDensity.pm?root=ensembl&view=markup">PseudogeneDensity.pm</a>. Pseudogenes (density) 1 \N
151 Short non-coding gene density as calculated by <a rel="external" href="http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/modules/Bio/EnsEMBL/Production/Pipeline/Production/NonCodingDensity.pm?root=ensembl&view=markup">ShortNonCodingDensity.pm</a>. Short non-coding genes (density) 1 \N
152 Coding gene density as calculated by <a rel="external" href="http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/modules/Bio/EnsEMBL/Pipeline/Production/CodingDensity.pm?root=ensembl&view=markup">CodingDensity.pm</a>. Coding genes (density) 1 \N
153 Percentage of repetitive elements for top level sequences (such as chromosomes, scaffolds, etc.) Repeats (percent) 1 \N
154 Repeat regions annotated in <a href="http://www.ebi.ac.uk/ena/">ENA</a> Repeats (ENA) 1 \N
155 Direct repeat regions annotated in <a href="http://www.ebi.ac.uk/ena/">ENA</a> Direct repeats (ENA) 1 \N
156 Density of single nucleotide polymorphisms (SNPs) as calculated by <a rel="external" href="http://cvs.sanger.ac.uk/cgi-bin/viewvc.cgi/ensembl/modules/Bio/EnsEMBL/Pipeline/Production/SnpDensity.pm?root=ensembl&view=markup">SNPDensity.pm</a>. SNP Density 1 \N
157 The XRef projection pipeline re-implemented by CK based on work by Andy and tweaked by Dan Projected XRef 0 \N
199 InterPro2GO file is generated manually by the InterPro team at the EBI. InterPro2GO mapping 1 \N
193 Protein domains and motifs in the <a rel="external" href="http://www.sciencedirect.com/science?_ob=ArticleURL&amp;_udi=B6WK7-457CXWM-3D&amp;_user=776054&amp;_coverDate=11%2F02%2F2001&amp;_rdoc=17&amp;_fmt=high&amp;_orig=browse&amp;_srch=doc-info(%23toc%236899%232001%23996869995%23286382%23FLA%23display%23Volume)&amp;_cdi=6899&amp;_sort=d&amp;_docanchor=&amp;_ct=17&amp;_acct=C000042238&amp;_version=1&amp;_urlVersion=0&amp;_userid=776054&amp;md5=a921e84cd71c59f75644aa28f3224b58">SUPERFAMILY</a> database. Superfamily 1 {'type' => 'domain'}
176 <i>Triticum aestivum</i> 3B chromosome genes annotated by <a href="http://www6.clermont.inra.fr/umr1095_eng">INRA GDEC group</a> GDEC 3B annotation 1 {'colour_key' => '[biotype]', 'label_key' => '[biotype]','default' => {'MultiTop' => 'gene_label','contigviewbottom' => 'transcript_label','MultiBottom' => 'collapsed_label','contigviewtop' => 'gene_label','alignsliceviewbottom' => 'as_collapsed_label','cytoview' => 'gene_label'}, 'name' => 'GDEC', 'caption' => 'GDEC', 'multi_name' =>'GDEC','key' => 'gdec'}
180 <a rel="external" href="http://www.repeatmasker.org">RepeatMasker</a> is used to find repeats and low-complexity sequences. This track usually shows repeats alone (not low-complexity sequences). Repeats 1 \N
181 Repeats detected using the <a href="http://wheat.pw.usda.gov/ITMI/Repeats/">TREP</a> library (trep.nr) using <a rel="external" href="http://www.repeatmasker.org">RepeatMasker</a>. Repeats TREP library 1 \N
3495644 3309354 1 4562 1 4562 1
3495727 3355688 1 18301 1 18301 1
3495794 3116582 1 5428 1 5428 1
1 embl_acc European Nucleotide Archive (was EMBL) accession \N
2 status Status \N
3 synonym Synonym \N
4 name Name Alternative/long name
5 type Type of feature \N
6 toplevel Top Level Top Level Non-Redundant Sequence Region
7 GeneCount Gene Count Total Number of Genes
8 KnownGeneCount Known Gene Count Total Number of Known Genes
9 PseudoGeneCount PseudoGene Count Total Number of PseudoGenes
10 SNPCount Short Variants Total Number of SNPs
11 codon_table Codon Table Alternate codon table
12 _selenocysteine Selenocysteine \N
13 bacend bacend \N
14 htg htg High Throughput phase attribute
15 miRNA Micro RNA Coordinates of the mature miRNA
16 non_ref Non Reference Non Reference Sequence Region
17 sanger_project Sanger Project name \N
18 clone_name Clone name \N
19 fish FISH location \N
21 org Sequencing centre \N
22 method Method \N
23 superctg Super contig id \N
24 inner_start Max start value \N
25 inner_end Min end value \N
26 state Current state of clone \N
27 organisation Organisation sequencing clone \N
28 seq_len Accession length \N
29 fp_size FP size \N
30 BACend_flag BAC end flags \N
31 fpc_clone_id fpc clone \N
32 KnwnPCCount protein_coding_KNOWN Number of Known Protein Coding
33 NovPCCount protein_coding_NOVEL Number of Novel Protein Coding
34 NovPTCount processed_transcript_NOVEL Number of Novel Processed Transcripts
35 PutPTCount processed_transcript_PUTATIVE Number of Putative Processed Transcripts
36 PredPCCount protein_coding_PREDICTED Number of Predicted Protein Coding
37 IGGeneCount IG_gene Number of IG Genes
38 IGPsGenCount IG_pseudogene Number of IG Pseudogenes
39 TotPsCount total_pseudogene Total Number of Pseudogenes
42 KnwnPCProgCount protein_coding_in_progress_KNOWN Number of Known Protein Coding in progress
43 NovPCProgCount protein_coding_in_progress_NOVEL Number of Novel Protein Coding in progress
44 AnnotSeqLength Annotated sequence length Annotated Sequence
45 TotCloneNum Total number of clones Total Number of Clones
46 NumAnnotClone Fully annotated clones Number of Fully Annotated Clones
47 ack Acknowledgement Acknowledgement for manual annotation
48 htg_phase High throughput phase High throughput genomic sequencing phase
49 description Description A general descriptive text attribute
50 chromosome Chromosome Chromosomal location for supercontigs that are not assembled
51 nonsense Nonsense Mutation Strain specific nonesense mutation
52 author Author Group resonsible for Vega annotation
53 author_email Author email address Author email address
54 remark Remark Annotation remark
55 transcr_class Transcript class Transcript class
56 KnwnPTCount processed_transcript_KNOWN Number of Known Processed Transcripts
57 ccds CCDS CCDS identifier
58 CCDS_PublicNote CCDS Public Note Public Note for CCDS identifier, provided by http://www.ncbi.nlm.nih.gov/CCDS
59 Frameshift Frameshift Frameshift modelled as intron
60 PTCount processed_transcript Number of Processed Transcripts
61 PredPTCount processed_transcript_PREDICTED Number of Predicted Processed Transcripts
62 ncRNA Structure RNA secondary structure line
63 skip_clone skip clone Skip clone in align_by_clone_identity.pl \N
64 coding_cnt Coding genes Number of protein coding Genes
65 GeneNo_novCod novel protein_coding Gene Count Number of novel protein_coding Genes
66 GeneNo_rRNA rRNA Gene Count Number of rRNA Genes
67 pseudogene_cnt Pseudogenes Number of pseudogenes
68 GeneNo_snRNA snRNA Gene Count Number of snRNA Genes
69 GeneNo_snoRNA snoRNA Gene Count Number of snoRNA Genes
70 GeneNo_miRNA miRNA Gene Count Number of miRNA Genes
71 GeneNo_mscRNA misc_RNA Gene Count Number of misc_RNA Genes
72 GeneNo_scRNA scRNA Gene Count Number of scRNA Genes
73 GeneNo_MTrRNA Mt_rRNA Gene Count Number of Mt_rRNA Genes
74 GeneNo_MTtRNA Mt_tRNA Gene Count Number of Mt_tRNA Genes
75 GeneNo_RNA_pseu RNA_pseudogene Gene Count Number of RNA_pseudogene Genes
76 GeneNo_tRNA tRNA Gene Count Number of tRNA Genes
77 GeneNo_rettran retrotransposed Gene Count Number of retrotransposed Genes
78 GeneNo_snlRNA snlRNA Gene Count Number of snlRNA Genes
79 GeneNo_proc_tr processed_transcript Gene Count Number of processed transcript Genes
80 supercontig SuperContig name \N
81 well_name Well plate name \N
82 bacterial Bacterial \N
83 NovelCDSCount Novel CDS Count \N
84 NovelTransCount Novel Transcript Count \N
85 PutTransCount Putative Transcript Count \N
86 PredTransCount Predicted Transcript Count \N
87 UnclassPsCount Unclass Ps count \N
88 KnwnprogCount Known prog Count \N
89 NovCDSprogCount Novel CDS prog count \N
90 bacend_well_nam BACend well name \N
91 alt_well_name Alt well name \N
92 TranscriptEdge Transcript Edge \N
93 alt_embl_acc Alt European Nucleotide Archive (was EMBL) acc \N
94 alt_org Alt org \N
95 intl_clone_name International Clone Name \N
96 embl_version European Nucleotide Archive (was EMBL) Version \N
97 chr Chromosome Name Chromosome Name Contained in the Assembly
98 equiv_asm Equivalent EnsEMBL assembly For full chromosomes made from NCBI AGPs
99 GeneNo_ncRNA ncRNA Gene Count Number of ncRNA Genes
100 GeneNo_Ig Ig Gene Count Number of Ig Genes
109 HitSimilarity hit similarity percentage id to parent transcripts
110 HitCoverage hit coverage coverage of parent transcripts
111 PropNonGap proportion non gap proportion non gap
112 NumStops number of stops \N
113 GapExons gap exons number of gap exons
114 SourceTran source transcript source transcript
115 EndNotFound end not found end not found
116 StartNotFound start not found start not found
117 Frameshift Fra Frameshift modelled as intron \N
118 ensembl_name Ensembl name Name of equivalent Ensembl chromosome
119 NoAnnotation NoAnnotation Clones without manual annotation
120 hap_contig Haplotype contig Contig present on a haplotype
121 annotated Clone Annotation Status \N
122 keyword Clone Keyword \N
123 hidden_remark Hidden Remark \N
124 mRNA_start_NF mRNA start not found \N
125 mRNA_end_NF mRNA end not found \N
126 cds_start_NF CDS start not found \N
127 cds_end_NF CDS end not found \N
128 write_access Write access for Sequence Set 1 for writable , 0 for read-only
129 hidden Hidden Sequence Set \N
130 vega_name Vega name Vega seq_region.name
131 vega_export_mod Export mode E (External), I (Internal) etc
132 vega_release Vega release Vega release number
133 atag_CLE Clone_left_end Clone_lef_end feature marked in GAP database
134 atag_CRE Clone_right_end Clone_right_end feature marked in GAP database
135 atag_Misc Misc miscellaneous feature marked in GAP database
136 atag_Unsure Unsure region of uncertain DNA sequence marked in GAP database
137 MultAssem Multiple Assembled seq region Part of Seq Region is part of more than one assembly
140 wgs WGS contig WGS contig integrated into the map
141 bac AGP clones tiling path of clones
142 GeneGC Gene GC Percentage GC content for this gene
143 TotAssemblyLeng Finished sequence length Length of the assembly not counting sequence gaps
144 amino_acid_sub Amino acid substitution Some translations have been manually curated for amino acid substitiutions. For example a stop codon may be changed to an amino acid in order to prevent premature truncation, or one amino acid can be substituted for another.
145 _rna_edit rna_edit RNA edit
146 kill_reason Kill Reason Reason why a transcript has been killed
147 strip_UTR Strip UTR Transcript needs bad UTR removing
148 TotAssLength Finished sequence length Finished Sequence
149 PsCount pseudogene Number of Pseudogenes
152 TotPTCount total_processed_transcript Total Number of Processed Transcripts
153 TotPCCount total_protein_coding Total Number of Protein Coding
154 NovNcCount novel_non_coding Number of Novel Non Coding
155 KnwnPolyPsCount known_polymorphic Number of Known Polymorphic Pseudogenes
156 PolyPsCount polymorphic_pseudogene Number of Polymorphic Pseudogenes
157 TotIGGeneCount total_IG_gene Total Number of IG Genes
158 ProcPsCount proc_pseudogene Number of Processed Pseudogenes
159 UnPsCount unproc_pseudogene Number of Unprocessed Pseudogenes
160 TPsCount transcribed_pseudogene Number of Transcribed Pseudogenes
161 TECCount TEC Number of TEC Genes
162 KnwnIGGeneCount IG_gene_KNOWN Number of Known IG Genes
163 KnwnIGPsGeCount IG_pseudogene_KNOWN Number of Known IG Pseudogenes
164 IsoPoint Isoelectric point Pepstats attributes
165 Charge Charge Pepstats attributes
166 MolecularWeight Molecular weight Pepstats attributes
167 NumResidues Number of residues Pepstats attributes
168 AvgResWeight Ave. residue weight Pepstats attributes
170 initial_met Initial methionine Set first amino acid to methionine
171 NonGapHCov NonGapHCov \N
172 otter_support otter support Evidence ID that was used as supporting feature for building a gene in Vega
173 enst_link enst link Code to link a OTTT with an ENST when they both share the CDS of ENST
174 upstream_ATG upstream ATG Alternative ATG found upstream of the defined as start ATG for the transcript
175 TPPsCount transcribed_processed_pseudogene Number of Transcribed Processed Pseudogenes
176 TUPsCount transcribed_unprocessed_pseudogene Number of Transcribed Unprocessed Pseudogenes
177 UniPsCount unitary_pseudogene Number of Unitary Pseudogenes
178 KnwnTECCount TEC_KNOWN Number of Known TEC genes
179 TotTECGeneCount TEC_all Total number of TEC genes
180 TUyPsCount transcribed_unitary_pseudogene Number of Transcribed Unitary Pseudogenes
181 PolyCount polymorphic Number of Polymorphic Genes
182 KnwnPolyCount polymorphic Number of Known Polymorphic Genes
183 KnwnTRCount TR_gene_known Number of Known TR Genes
184 TRGeneCount TR_gene Number of TR Genes
185 TRPsCount TR_pseudo Number of TR Pseudogenes
186 tp_ott_support otter protein transcript support Evidence ID that was used as supporting feature for building a gene in Vega
187 td_ott_support otter dna transcript support Evidence ID that was used as supporting feature for building a gene in Vega
188 ep_ott_support otter protein exon support Evidence ID that was used as supporting feature for building a gene in Vega
189 ed_ott_support otter dna exon support Evidence ID that was used as supporting feature for building a gene in Vega
190 GeneNo_lincRNA lincRNA Gene Count Number of lincRNA Genes
191 StopGained SNP causes stop codon to be gained This transcript has a variant that causes a stop codon to be gained in at least 10 percent of a HapMap population
192 StopLost SNP causes stop codon to be lost This transcript has a variant that causes a stop codon to be lost in at least 10 percent of a HapMap population
193 GeneNo_class_I_ class_I_RNA Gene Count Number of class_I_RNA Genes
194 GeneNo_SRP_RNA SRP_RNA Gene Count Number of SRP_RNA Genes
195 GeneNo_class_II class_II_RNA Gene Count Number of class_II_RNA Genes
196 GeneNo_P_RNA RNase_P_RNA Gene Count Number of RNase_P_RNA Genes
197 GeneNo_RNase_MR RNase_MRP_RNA Gene Count Number of RNase_MRP_RNA Genes
198 lost_frameshift lost_frameshift Frameshift on the query sequence is lost in the target sequence
199 AltThreePrime Alternate three prime end The position of other possible three prime ends for the transcript
216 GeneInLRG Gene in LRG This gene is contained within an LRG region
217 GeneOverlapLRG Gene overlaps LRG This gene is partially overlapped by a LRG region (start or end outside LRG)
218 readthrough_tra readthrough transcript Havana readthrough transcripts
300 CNE Constitutive exon An exon that is always included in the mature mRNA, even in different mRNA isoforms
301 CE Cassette exon One exon is spliced out of the primary transcript together with its flanking introns
302 IR Intron retention A sequence is spliced out as an intron or remains in the mature mRNA transcript
303 MXE Mutually exclusive exons In the simpliest case, one or two consecutive exons are retained but not both
304 A3SS Alternative 3' sites Two or more splice sites are recognized at the 5' end of an exon. An alternative 3' splice junction (acceptor site) is used, changing the 5' boundary of the downstream exon
305 A5SS Alternative 5' sites Two or more splice sites are recognized at the 3' end of an exon. An alternative 5' splice junction (donor site) is used, changing the 3' boundary of the upstream exon
306 AFE Alternative first exon The second exons of each variant have identical boundaries, but the first exons do not overlap
307 ALE Alternative last exon Penultimate exons of each splice variant have identical boundaries, but the last exons do not overlap
308 II Intron isoform Alternative donor or acceptor splice sites lead to truncation or extension of introns, respectively
309 EI Exon isoform Alternative donor or acceptor splice sites leads to truncation or extension of exons, respectively
310 AI Alternative initiation Alternative choice of promoters
311 AT Alternative termination Alternative choice of polyadenylation sites
312 patch_fix Assembly Patch Fix Assembly patch that will, in the next assembly release, replace the corresponding sequence found in the current assembly
313 patch_novel Assembly Patch Novel Assembly patch that will, in the next assembly release, be retained as an alternate non-reference sequence in a similar way to haplotypes
314 LRG Locus Reference Genomic Locus Reference Genomic sequence
315 NoEvidence Evidence for transcript removed Supporting evidence for this projected transcript has been removed
316 circular_seq Circular sequence Circular chromosome or plasmid molecule
317 external_db External database External database to which seq_region name may be linked
318 split_tscript split_tscript split_tscript
319 Threep Three prime end Alternate three prime end
320 gene_cluster Gene cluster Havana annotated gene cluster
328 _rib_frameshift Ribosomal Frameshift Position and magnitude of frameshift
345 vega_ref_chrom Vega reference chromosome Haplotypes reference a regular chromosome (indicated in the value of the attribute)
346 PutPCCount protein_coding_PUTATIVE Number of Putative Protein Coding
347 proj_alt_seq Projection altered sequence Projected sequence differs from original
348 hav_gene_type Havana gene biotype Gene biotype assigned by Havana
349 GeneNo_asense antisense Gene Count Number of antisense Genes
350 GeneNo_sense_in sense_intronic Gene Count Number of sense_intronic Genes
351 GeneNo_amb_orf ambiguous_orf Gene Count Number of ambiguous_orf Genes
352 GeneNo_ret_int retained_intron Gene Count Number of retained_intron Genes
353 noncoding_cnt Non coding gene count Number of non coding genes
354 GeneNo_ncrna_h ncrna_host Gene Count Number of ncrna_host Genes
355 GeneNo_sens_ov sense_overlapping Gene Count Number of sense_overlapping Genes
356 GeneNo_3prime 3prime_overlapping Gene Count Number of 3prime_overlapping Genes
357 GeneNo_tmRNA tmRNA Gene Count Number of tmRNA Genes
358 PHIbase_mutant PHI-base mutant PHI-base phenotype of the mutants
359 GeneNo_ribozyme ribozyme Gene Count Number of ribozyme Genes
360 ncrna_host ncrna_host Havana ncrna_host gene
361 peptide-class Peptide classification The classification of the gene or transcript based on alignment to NR (values: TE WH NH)
362 working-set Working Gene Set High-confidence set of genes, composed of evidence-based genes and non-overlapping protein-coding ab initio gene models
363 filtered-set Filtered Gene Set v1 Working genes that are screened for TE content and orthology with sorghum and rice.
364 super-set Super Working Gene Set Set of all working gene set loci from both Builds 4a and 5a
365 projected4a2 Projected by alignment Temporary (Monday, August 23, 2010)
366 merged Merged species \N
367 karyotype_rank Rank in the karyotype For a given seq_region, if it is part of the species karyotype, will indicate its rank
368 noncoding_acnt Alternate non coding gene count Number of non coding genes on alternate sequences
369 coding_acnt Coding genes Number of protein coding genes on alternate sequences
370 pseudogene_acnt Pseudogenes Number of pseudogenes on alternate sequences
371 clone_end Clone end Side of the contig on which a vector lies (enum:RIGHT, LEFT).
372 contig_scaffold Contig Scaffold Scaffold that contains mutually ordered contigs.
373 current_version Current Accession Version Identifies the most recent version of an accession.
374 seq_status Sequence Status Sequence status.
375 clone_vector Vector sequence A clone-end vector associated with a contig (enum:SP6, T7).
376 creation_date Creation date Creation date of annotation
377 update_date Update date Last update date of annotation
378 seq_date Sequence date Sequence date
379 has_stop_codon Contains stop codon Translation attribute
380 havana_cv Havana CV term Controlled vocabulary terms from Havana
381 TlPPsCount translated_processed_pseudogene Number of Translated Processed Pseudogenes
382 NoTransRefError No translations due to reference error This gene is believed to include protein coding transcripts, but no transcript has a translation due to a reference assembly error making specifying the translation impossible.
383 parent_exon_key parent_exon_key The exon key to identify a projected transcript's parent transcript.
386 parent_sid parent_sid The parent stable ID to identify a projected transcript's parent transcript. For internal statistics use only since this method does not work in all cases.
387 snoncoding_acnt Small non coding genes Number of small non coding genes on alternate sequences
388 lnoncoding_acnt Long non coding genes Number of long non coding genes on alternate sequences
389 snoncoding_cnt Small non coding genes Number of small non coding genes
390 lnoncoding_cnt Long non coding genes Number of long non coding genes
391 TlUPsCount translated_unprocessed_pseudogene Number of Translated Unprocessed Pseudogenes
393 AFFYMETRIXCount AFFYMETRIX Count Total Number of AFFYMETRIX features
394 RFLPCount RFLP Count Total Number of RFLP features
395 xref_id Xref ID ID of associated database reference
396 vega_chr_type Vega chrom type Type of chromosome - haplotype, other, etc
397 GeneNo_MRP_RNA MRP_RNA Gene Count Number of MRP_RNA Genes
398 genscan Genscan gene predictions Number of prediction genes generated by Genscan
399 gsc GSC gene prediction Number of prediction genes generated by gsc
400 snap Snap gene prediction Number of prediction genes generated by Snap
401 fgenesh FGENESH gene prediction Number of prediction genes generated by FGENESH
402 genefinder Genefinder gene prediction Number of prediction genes generated by Genefinder
403 transcript_cnt Gene transcripts Number of transcripts
404 transcript_acnt Gene transcripts Number of transcripts on the alternate sequences
405 ref_length Golden Path Length Length of the primary assembly
406 total_length Base Pairs Total length of the assembly
407 refseq_compare refseq_compare This attribute can be applied to both gene and transcript. It is supposed to give an indication of whether the annotation in the ensembl database is matched by annotation that we have imported from refseq. At the gene level, the match is unlikely to be an exact match because all or some of the transcripts may differ. Also, the biotype e.g. coding potential may differ. therefore, matching is a bit fuzzy and is done primarily on genomic location and then also takes gene length and gene name into consideration.
408 coding_rcnt Readthrough coding genes Number of readthrough coding genes
409 coding_racnt Readthrough coding genes Number of readthrough coding genes on alternate sequences
410 lnoncoding_racnt Readthrough long non coding genes Number of readthrough long non coding genes on alternate sequences
411 snoncoding_racnt Readthrough small non coding genes Number of readthrough small non coding genes on alternate sequences
412 snoncoding_rcnt Readthrough small non coding genes Number of readthrough small non coding genes
413 lnoncoding_rcnt Readthrough long non coding genes Number of readthrough long non coding genes
414 pseudogene_rcnt Readthrough pseudogenes Number of readthrough pseudogenes
415 pseudogene_racnt Readthrough pseudogenes Number of readthrough pseudogenes on alternate sequences
416 gencode_level GENCODE annotation level level 1 (verified loci), level 2 (manually annotated loci), level 3 (automatically annotated loci)
417 gencode_basic GENCODE basic annotation GENCODE Basic is a view provided by UCSC for users. It includes a subset of the GENCODE transcripts. In general, for protein coding genes it will show only the full length models (unless a protein coding genes has no full-length models, in which case other rules apply). For noncoding genes, it will also only show the full-length (mRNA start and end found) models (unless there are no full-length models, in which case other rules apply).
418 struct_var Structural variants Total Number of structural variants
419 genblast GenBlastG gene predictions Number of prediction genes generated by GenBlastG
420 syn_gene_pairs Syntenic gene pairs Syntenic gene relationship from Gramene pipeline
421 vectorbase_adar VectorBase gene predictions Number of prediction genes generated with MAKER, by VectorBase.
422 trnascan tRNAscan-SE predictions Number of predicted tRNA genes generated by tRNAscan-SE
423 tgac_pred_supp7 T. turgidum RNA-seq alignments Number of T. turgidum RNA-seq alignments from Krasileva et al.
424 tgac_pred_supp17 T. aestivum RNA-seq alignments Number of T. aestivum RNA-seq alignments from Krasileva et al.
425 genome_component Genome Component Name For polyploid genome, the genome component name the seq_region belongs to.
426 transcript_whl RNA-seq transcripts RNA-seq transcripts from EchinoBase
428 TSL Transcript Support Level Transcription Support Level (TSL) is a method to highlight the well-supported and poorly-supported transcript models for users. The method relies on the primary data that can support full-length transcript structure and data are provided by UCSC. The following categories are assigned to each of the evaluated annotations. tsl1 - all splice junctions of the transcript are supported by at least one non-suspect mRNA. tsl2 - the best supporting mRNA is flagged as suspect or the support is from multiple ESTs. tsl3 - the only support is from a single EST. tsl4 - the best supporting EST is flagged as suspect. tsl5 - no single transcript supports the model structure. tslNA - the transcript was not analyzed for one of the following reasons: pseudogene annotation, including transcribed pseudogenes.Human leukocyte antigen (HLA) transcript. Immunoglobin gene transcript. T-cell receptor transcript. Single-exon transcript (will be included in a future version)
429 protein_coverage Protein Coverage Protein coverage for this gene derived from geneTree in compara
430 consensus_coverage Consensus Coverage Consensus coverage for this gene derived from geneTree in compara
431 has_start_codon Contains start codon Translation attribute
432 appris_pi APPRIS principal isoform Transcript expected to code for the main functional isoform based on a range of protein features. APPRIS is a system that deploys a range of computational methods to provide value to the annotations of the human genome. http://appris.bioinfo.cnio.es/ http://nar.oxfordjournals.org/content/41/D1/D110.long. Icon is {APPRIS} in green.
433 appris_ci APPRIS candidate principal isoform APPRIS candidate principal isoform: Where there is no single 'appris_principal' variant the main functional isoform will be translated from one of the 'appris_candidate' genes. APPRIS is a system that deploys a range of computational methods to provide value to the annotations of the human genome. http://appris.bioinfo.cnio.es/ http://nar.oxfordjournals.org/content/41/D1/D110.long. Icon is {APPRIS} in amber.
434 appris_ci1 APPRIS candidate principal isoform (longest coding sequence) APPRIS candidate principal isoform (longest coding sequence): Where there is no single 'appris_principal' variant the main functional isoform will be translated from one of the 'appris_candidate' genes. Where there is no 'appris_candidate_ccd' or 'appris_candidate_longest_ccds' variant, the longest protein of the 'appris_candidate' variants is selected as the primary variant. APPRIS is a system that deploys a range of computational methods to provide value to the annotations of the human genome. http://appris.bioinfo.cnio.es/ http://nar.oxfordjournals.org/content/41/D1/D110.long. Icon is {APPRIS*} in amber.
435 appris_ci2 APPRIS candidate principal isoform (longest CCDS) APPRIS candidate principal isoform (longest CCDS): Where there is no single 'appris_principal' variant the main functional isoform will be translated from one of the 'appris_candidate' genes. When there are several 'appris_candidate' transcripts in CCDS, APPRIS labels the longest CCDS. APPRIS is a system that deploys a range of computational methods to provide value to the annotations of the human genome. http://appris.bioinfo.cnio.es/ http://nar.oxfordjournals.org/content/41/D1/D110.long. Icon is {APPRIS**} in amber.
436 appris_ci3 APPRIS candidate principal isoform (CCDS) APPRIS candidate principal isoform (CCDS): Where there is no single 'appris_principal' variant the main functional isoform will be translated from one of the 'appris_candidate' genes. This 'appris_candidate' transcript is unique in being part of CCDS. APPRIS is a system that deploys a range of computational methods to provide value to the annotations of the human genome. http://appris.bioinfo.cnio.es/ http://nar.oxfordjournals.org/content/41/D1/D110.long. Icon is {APPRIS***} in amber.
10 1 scaffold IWGSP1 4 \N
7 1 contig \N 3 default_version,sequence_level
8 1 scaffold IWGSC2 2 default_version
9 1 chromosome IWGSC2 1 default_version
22 156 0 150 sum
8 149 0 150 sum
21 150 0 150 sum
16 151 0 150 sum
20 153 0 150 ratio
19 152 0 150 sum
17 148 0 150 ratio
3116582 ATCCCATGTGGAGATACCAGACTGAACTAAGCGGTGGTTAAGCCCACAAAAGTCCATAATTATTTCAGCTTTGTGCTTGATGAACCATCCCCAGGCCCATCCACCACTTCACCAATCTAACAATTTCATTTATGAAAAGATAAGTCACAGCTGAATTCAAAGTAACAACTATACAAAGAACAATGCCACAGCCAGGTCAGGCATGGTAAAAGTATATCGAGTGCTAAATGAGGTTTCATTTTATGTGTAACAAATACTCCCTCCGTCCGAAAATACTTGTCATCAAAATGGACAAAAAGGAACGTATCTAGAACTAAAATACATCTAGATACATCCCTTTTTATTCATTTTGATGACAAGTATTTCCGGACGGAGGGAGTATGTGTCATGAACCCTATCATATTCGAAGATTGTATGTGTGAATTTGAACCATTACTGTGGGCATGCAGTGATGCCTCACGGGTACCTCAAATTGCATAACAACTTGCATATAGGTTAAATAACTCAATCAGCATCAAGCAGTTACAAAAAGCAACACACTAATATCCTCAGCTTTGCTGATTCTTTGATGTAACAACTTAATATAATACTCTGGAAAGGTCTAATGTACAAAGGTACTTACTTTGTCCCATTTTAGCTCTTTTGAATTCCATGAATAAGCAACACCGGTGTGTCCCTCTCTAACAATTAGCGTTTGTGCAACGATTCCTGCTTAGAGGGGGAAAAGGTTACAAACATTGCACTACTGTGCAAAAATAACACGCACGGCAATGACTAGATATTGTCACAGTTACTTTACATACACAAGTCCACGACACTAAAGAATTTAGAGAAAAAATGTTTTTATATTGTTATCTCCTTGACGAAGGAAGGTTTATTGGAAACTAGAAAGATATGAATATTTTCAAAAGCTCGAAATTATTTCAGTGTGCAATAGTGCATCTTCAATCCGATTTTAATTTTCAGCTCCATAATAAGCTGACCTGCAAAATTCACTACAAATAGTTGGAGCATCATGGAATCAACACAATACACGTGTACCGCATCAGAAAAATGAGATTTATGACCTTGTTGTGTCATTCCCGCAGCTCCTGATGGATCCATCAGCTTCAGTCCACCAACAGTCTTTCTGTAGAGAAAAAAATAGGCATAAATATAATTTGATTAACACCATGATTCCGGCTTTTTTTTGGACAAGAAAAAGTGTCGCCTAAAAATTAAGAAGTTAAAATAACAATTACAGGAGTAATCTGACAACAAAACTGATCCTTTAAGCAGAAGATGTTAAAACCTCAGAAATATGAAAAAAGAAAATCAGGAACCAACCTATATGCTGCAAGTTCCTCATCACGGCAGGGCCTATTATTGCCAGTTGTCCATATCCTCACAATTCCATCACAACATGCAGTTACAACATCGCCATTATCCAAAAATTTAGCATCCCATATACGGCCTGGGTGTTCAATGCTCTGAACACAGATTCCATCTGCATTATATTACTTACAGTCATATAACCAGGTACATGAAGAAAATTCTGCATTCTGCTACGTACTAACAACCAAAACCAAAAAACTGCAATGTACTGCACCTCCAATATAATTTTCATTTCTACAATGGTTCATATTATGAATCCAAACATACTATCCCAAAAAACAAGACAGATATATCCTAGCTGCATCCATGAAACACACAAATCAAATCAGCAGCCCAAGAACAAGCACGGCTTTACATCATAGATACAAGCGTAAAAGAAGGCGGGTAGTGTGGGTATTGAGATTCTTATTTTCAATATGGAAGAAAAGAAGACTCGAACTGCTCATGGACTAGCCAAAGGAGGAATCAGCAATACAGATGCTTAACGACAACCAGCAGATCTCTTTTTACTGATTGTCACAGTTTCCATTATATTGCTAAATACGAACTACCTTTCCCATATGCCACTGCCCAATATGTTTGATGTCAACGTATTTACAATCTTTTGCCTATAATGGAATCCCGTGCAATATTTTGCCTGTAACAGAATCCCACTTAACAGGAAGTACTATCATAGACTGGATTATTTTTGTTTGGAGAAAACATTAGACAGAGGCATAGGGAGACAAACCATCTGAGGAATCGATAGCAACCCCAATGGAACGGTCAGGGTTTAAAGAGTCATTCAGTACAGATGTCAATAAAAAAAAGCAAAAAACAAACCCAAACAAAGACAAGAGAAATATATAATGTTAAATCAGCTTGGGTCCATAGATCAGTTGTCACATATAGAAAACCGAATTAATATCAGTCAGTTCGGTTTTAGGTTCAGGTTAACAAAATGCACTGAAAGAACCGGCTCGTCCTATGGCCCCATTTCCTAGGGCCATGCTACCATCCTTATAGCTTAGCAAAAAAAAACAAGTACATCAAAATCTCAACTAAAGCCCGGCATGATCTCCACCAAGTCAGCTAGGCGCCTAGGCCCATCTCTTGCTCTCTCGTACCAATGCAATCACGACAGGCCACAGGGAAACAAAGTTACCAGCCGACATGCGTGCAATCCATCCCGACAACCAACAGCACTGCCCTCGGCAGGCCCATCAGCGGACTAGCACTCCTGCCAGTCTGTCACCATCAACAAGACGATTCAAAGGATTCAAAGAGAAGCAGCGCCATGTTGATTCAACAAGATTCTGGATTTCAATCATGGTCTGTTGACAAGATTCAAGTATTTGACAGCATGCGCACCCTGTTCTGCTATTGAATTACCTGCTAACATTACATTTTGGTTTAAACCGAAAAGCAAGCCGGAGTTTGGGTGAACCCAACTTCCGGTTTGTAGAACTTTCCAGGCTAGCTCGGTTGTCAATTTTAGTAAACCGAAATACCAAAAAAAGAGGAAGAACGAATGCCTACACCTAGATTAAAGTATAAAAAGAAATTATATCCTATAAACAAGTGCCACTGCATTTTAACAAGAATTCTCTAAAGCATACAAAATAAATCACCTTTCCATATCTTGACCGAGCGATCTCGACTGCCACTAGCAATAAGACCAGATGAATGAGCATCCACAGAATATACAAGAGAGGTATGGCCAATCATCTCCAACAGGGGTTGGCCAGTTAATGCCCATAACTTTATAGTTCTGCGACAAAACAAAATATTATATGTGATCATGTAAATGAGTAGCTGTAAACTGAAAGAATAAATTTGATGCACAAAAAATGTAAGACGATAATGAAAATGATGAAAAGCCAAATAGATGAGCATTTTATTTCAGCAAACCACTGGCAGGATATTAGTACGAATATCCAAGATTAAACGAGAAATTTTGATATCTTCATTTACAATTTTAGAACAAATAATAGCAGCTTCTACTATACTGCACCATCCTTTCGTTCAAAAGCAAGTGGAAATAGTCAAGTGATAACTTACCCATCATGTGATGCAGAGAGTATACCCATTCCTGGCATCTGTGCTAAACAACAAACAGTGTCTGCAATGGAACAACATTCTGTCAACCGATCAAGTATGTGTGGATGAGCACAACAAAAGTCAAAAGCACCAGTGCACATCAGGAGTTAACAAATAACCTGCATGCCCAGAGAATGTATGTAGACAAATCCTTCCTTTCCAAAGTTTGATGGTGGAATCACTTGAACCTATACAAAAGGGGAAAGGTGTAAAGTATTAATCAACCATTTGACAAGTACTCCCTCCGTAAAGAAATATAAGAGCATTTAGATCACTAAAGCAGTGATCCAAACACTCTTATATTTCTTTACAGAGGTAGTAATAGATATCCAAGGACAGTCATAATTGCTCTCGAATATACTTCCCGTAAAGTAATAGATATACAAAGCGGAAGCTCTACCCGTAAATAGTTCTCCCGAGGGCAGCTTAAGAACAGTTTGCACTGCGGCTTCATGGGCCACCAAGATCTCTACAGCATTGCCATCTCTCCACCTTCTCAAAGTACTGTGCATAATACAAGTGTCAGGGTACAGCAAGGAACCATCAGATACAATGGGGAAACTTCATAATTTATTAGCCCAATATGTCATCACATGCCCAAAACACCAAATACGCCGCAGCCTTAAACACAAGTAGCATTGGAAACCTTTTCTAACAGGGGACTCAGAGTGTAGAAAGAAACAGAAGTACAATATGTGCATTTGTACAAAAAAAATATAAGAAATATAAATTATCAAAGAAGGTACTGAATTTATGCATATTAGTACAAAGTTAGTACAAAGTTGAGTAACTTACTTTGGGACAGAGGGAGTATATTACATTCATGTTACATCACCACATCTGCCAAACAACTACCCCATGAACAAATTGTCTGCATTTGCAGTGTGATTACATCATATACAAGAAAGACCCTCAGGATGAAATCAGCACAAGCAAGCAATCAACAAGAAGTACGTGAGCAAGTTCTGCACAGGAATTACACTGGTTGGGAAAAAACATACCAGTCCATCGATGAAGATATAATGTCACCGTTGTCATCGATAGCAAGACCAGTCACCTGTGAGGTGTGACCCTTCATTGTTCCAACAACTTCTCCTGTATGCAAATTCCACAGCAATACTAGTGTATCCATGCCACCAGAAACAATTGCTCCTTCCGGAAAGCGATCAGAAGGAGGGGCCCAAACCATTGCACCAACAAAACTAAAATGTCCTGCAAGGGTTTTCGAGAGGACATATTCGCACTTCTTTTCCGGGTGCTGCGTCCAGAATCTCACGGTTCCATCGCTTGATGAGGTTGCAACACCCACATCACCACAGATACATATCCTAGAAACCTATTGTAAAAAGAGCAAGGACAAGTTAGCAAAGAATCAAATGTGCAGCAAATGTAGCAATTATGAAAGAGCTTGATTATAAGGATCTAACTTTATTGGTTGAATACATGCCAGTACTCAAAGTCTAAAACTACTTACTGATGTAGATATGCGTTCCACATATGCAAAATAACCTTTGCCTAAGCTCTTAACAGTTTGAGCAGAATAATCGGTTAATACACGGGGATCACCTTTATCTCCAAATTTGGTTGATCATCATATAAGCACTTCTTTATTTTCAACACTAACATGTTTCTCTTTTACTATCCTTTGGACAGACATGGGCTTGCATAAAGGGGTATTTGGTATTTACATGCTAAATGCAGGTTATAATTTGAACCATAAGTCCATCGTTAGAAAAACAGAACGTGGCATTCTGGATGAGCATGGATTCCTCAAATAAGCACAACAATTTGTTGAGTTTCTGGTGGAACATAACAGGGAAGTTACAATCTGATTACAAGTGTAAAAATAACTCAAGCAAAACCAAGTAACTGATCATTGCTTGATCCACAAATCCACTACAAATATAATATCAAAAGGAAGTCAAACTGCAATGACTAATCGCGCCAGATCCACGCCGCCCCGACCAAGGCCGCC
3309354 GGCGCGATGTCGTGGAGTTCAGGGGCTTCTTCCGCTCCCGGATTCCGCCGCGCCAGTGGAAGGAGGGAGACGGACTCGAGGTCTCCTGTAGCTTACAGGGAGAGCCCAATGGCGTACGAGCCGCCGAAGATGTGCCATTGCAGACAGCCGCGCAAGGCGCCAAGATGGATCTCGTGGAGCCGCCAAAACCTTGGCAGGAGGTACTACGCCTGTGTGGATGCAATGGTGAGCCCCATTTTCTGTGTTTCTGCTGCTCTTTTCTTGCTCTTAGTTTGTGATTGATTTCATTTTCTGTTGAATAGCATGGTGGATGTGGCTATGTGGAATGGCATGATGATCCTTTGCCCACGTTTTTTAGCAACTTGATTGGAGATTTGAGAGACGAGGTGTGGAGGCTAAAGGGTCAGAGATCTGTGGCTGAGGCTGAAGATGGAATTCCAATTGTGCCTGTGTCTGGTCATGAAGCAGCATTACAGAATGTGGTTATGTCTCTGCAGGTTTAGTTAAAGGAGAAGAATGCAGAACTAGAAGCAATGAAAGGCAAATATATGAATGTGGTGATGGTTTTCATTGCCTTTGTGGTAGGTGTTTTCCTAGGGAAAGTGCTAGTGTTCTGAATGTGAGGTTAGCAGTTGGCATGAGTTATTTTGGTAGGAAAAAGTGCAAGTGCAATGAACATGTATGCAATGGTTTGTAATGCTATTATTTGTGATCTGGGAGTGGTTTGTTATCAATGAGACTATGATCTGGCAGTTAATAAAAATCTCAGTTTTAATGGAAGTTGCAGTAGCTATTTTGTATCAATTCTATGGAAATGAGCAAGTTGACTGTATGAGAACTCTGCTGTGAATATTGCTTGCATTTTGACAGCATTTCTGCTGGCATTTGCAGAATGTGCATATATATAGCAAAATGACAGTAATTGATTTGTAAGAAACAAAATGCAAACACAGTGCACATAAAGCAAACATTGCTTGAAATTTGACTGCATTTCGGTTGATAGCATCTCAGTTTACAACATCCCAGTTCACCAAAAGGACATACTTCATTAGAGGATCACCAAAAGCACATAGTTCAGTACATGATAACCAAAAGGACATAGTCCAGTACATGAGCAACACAAATATGTAACTAGTTGCCACTTGCAGTGAAGTATTGGTAGCTGGGCAGTGAAGATGCAGGAGCCCTCTTTCTTCTTTTATTTGTAGTAGATGGTCCAGCTTGTGCATTTGCTGATGACTTCTTGGGAGGTTTAAACCTTGAAGTTGCAGTACTTGGCACAGTTCCAAATGATCTTGTGGCAGTTCCTGTTGCAGGTTGTGCAGTAGCTGCCATAGATGGAGATGATCTTGGAGTAGACATTGTTGCTGGTTGAGAAGGTTGTGAAGATGGACCAGCCTAGTAAAATTCAAAAGAAGTTAGTAAAATTCAAGAGAAAATAGTAAAACTCATGTAAATCAATGAAATTTACCTTTGTTGTGTCCCTTTTTTTGCTAGTCTTCTTAAGATGGGCATTCTTCTTCTTGCCTCTCTCTGGATTTTGCTTGCAACCTTTCTTGTTATGTCCAGCAGTCCCACAGATTGAGCAAATAATTACAGTGCCATGCTTGGTCATTTTTTTGCTAGGCTTAGGTTTCTCTATTTCTTCCCTCCTCCTATCATTATTCTTAGGCCTGCCTGGCATGTTGTCTGGTATGGTTGCATATGCTGGGGCTTGAGGCCTAGGTTTGTCAGAAACTGGCCACATTTCTTCACCTTGTACAGGTTCCAAATAGTGTTCATAAATTTTGTTGAATACTTCAACAAAATAACAGGGAGCAATGAAATCTTCCACTTTTTTGCCACATTTGAAGATAGCTGTGCATGCATGGGAACAAGGAAGACCTGCCAGCTGGAAGTAGCCACATGAGCATGTCCAATTGTCAAGACTCACTGTGTACTGCCTTTTTCTCCCAGTGAGAAGTTTGACTTCAAATCCATCTTTTCCATTCCAAAGTACCTCCATGGACTGTGTCCTTGCTATGCTATTCTTCAACTTCTTAAAAGCACTGGGGCAGATTCTTCCATGAAACTTCTGATCTTTGGCCCTTTGTTCCTGAATTCTAACAAGTATTTGTTTCCTAATTTTTTCTTGCATTGAAATTATTGGATAAAACCTTGCTTCAACAATTGCATGATTAAAAGATTCACAAAGATTATTGTCAACTGATTCACAGTTGGAACCCACTAGAAAAAATGCCCTTGCCCAATGTACTGGCTCTGTTCTCATCATATCTTTTGCACCATCTGGTGTTTCTTGGGCTAGCTTTGCTTTGTAGTAGTTGAAGTCTTGCTTGTTTGCTGCTTTGGCAACTGCCCAGAACTTCTTCTGCCACTCATGTGCCCTATGCTTCTTTCTCCAGTTGGCATAGATATGCCTAGCACACATTCTGTGCTCTGCATTTGGCAGATAGTCCTGCATAGCATTAATCAGTCCCTTCTGCTGATCTGAAATGAACACCCATCCAGCTCCATTGTTATTAATGTCAAGATCTTTAATAAGCAAGCCAATAAACCACTTCCAGCTTTCATTTGTTTCCTTCTCAACAACAGCCCATGCCAGTGGATACATTTGATTGTTGGCATCTCTACCAACAGCACACAACAGCTCTCCTTTCACAGCTCCTTTGAAAAAACATCCATCTAATCCTATTACTTTCCTGCAGCCAGCCTTGAACCCTAACTTCAGTGCATTAAATCACACATAAAAGCTTTGAAATATGTTTTCTTCCATGTTTGTAGGATCCAAACAAACTGCAACAGTGCTTCCTGGATTACTTTTGAGCAGCTCCAATTGGTAATCAAAAACCCTAGTGTACTCATTCTTCATTCCAGCTCTTAATTTGTCCATGACTAGCTTCTTTGCATGCTTGCACTTAGAAGTTGATACATCAGCAAACATATCCTGGAGAACTGTTGCTTTGATGCTCTCAATCTTCCACATTGGATTAGCTAAAATGAAGTGCTCATATCTCTGAGCAATAACCTTTGCTGTCACAAGCCTGTTCTCTCTATTTTGTGCACATTCATGCTCATCATTAAAAGTAATAATCTGAAACCTGCTGGTTCTTGAGGTTTTGGCTCCATAAATCAACCAAGGGCACCCAGGCCATCCACACTTAGCTCTGACTCTATCTGCCTCTAATTTCATGAACACAATGCTCCTCTTGGTAACAATTCCATATCTCTTCAATGCCTTCACAAGCTGATTCTTGCTTCTGAACACCATTGTTAATGAGAAGTGTGGAATATCTGTGTCATTGTTGTATCTGGGATACTTGCTCTTCCTCCTAACCATTTGCCCATCAGAATCTTCATCATAAGAATAATCCTCATCAGATGAATCATAGCTCCACTCCTTCTCCTCTCCCTCTATCTGTTCTTCCATATTGGCAATTAGTTCAATGGGAACAGGTGCTGATGAATCTCCTGCAAGCCAACTCTTTGTATCTCTCATCTTCTTCTTGAATTTTCTAGCATGCCTCCTAAGCTCCACAACTTCAGAATTTTCTCCACTATCCTCACTATGGGGCATGTATTCAGTATCTTCATCAGAATCACTGTCTGAAACTGCAATATTGTCTTGCTCTGCTTCAATATTCACTTGCTCTCCTGCAATATTCACTTGCTCTCCTGCAATATTCACTTGCTCTCCTGCAATATTCACTTGTTCTGCTGTTGTACTGTTCTGAACATTGACTTGCTCTGCTCTTGTACTTAACTGAACTGGCACTTCATCTGGATTGCACACTTGAGAAATGACAAATTGGGAATCTGGCACTTGAACAACATCAGTAGCTTCTAAACTTCTTGTAGACCTGGGCTGCTTAACTGGACTGCTAACAAGTTGAGTGAGCACACCACTGTCAAGTGCCTCTGCACTAATGACAATATCAGGTTTTCAAATTCATCATCACTTACATCCATTATCTCATTCTCATAATCACTGCCACTACTGCTGTACTCACTGTCCTGCTCCCCATGATATTCAAGATAAATATCTGCTACATCTCCAACACAAATATAGTCTGCCATATTCATACAACCACTGTCATCAAACAAAAACACCAGACCCTCAGCTAGTTCCTTCCCAGGATACAGAAAATACAGCTTCATCGATTCCTTCAAATCAACATGGTCTTTCAAATGCCCTCTAACTTCTTGCAATGACAACTTGTCCCTCTCGATATGTGACATCTCTTCATCGCCCCCCACATAATCCAGAACAGGACCATTGTGGATGAACTGCCCTCCAATATGAAATCTGACGTTCAAAATCTCGTTCGGATCCATGATTTAACTGAAACAAACATGAGAATATCACTACATTGTCCTAATCCGAGCATTTGGAATAACAAAAATGCAAAAATAAAATCATCCCAAAACCTAACTTTACAGTTGACGAAAAGCCCCAATTTTTCGCCCACAAACCCTAACACTAACAGGGCAGAGAGAGCCTAAATTGCAGCGACCAGAGGAGGAGTACATCGAAGATATTACCTTCAACGCCGCTCGTCGTCCTG
3355688 CTCAACTCTGACATTCCAAATAACCACATGGAAAAGGAAACGACCCCCCAAATTAAGAGACAGCTTCACTGAAGCAATGCTAGCTGTGACGTAATCTATAAGGTGTCGAGGGGGCTAGTGATTGATGCACACCTATTTAACTCATCTAGCATTTTGATAAGTTCACCGAAGAGATCATTGAGTAGGACACGCTTCTGCCTCTTGTATTTGTGCATTTTCCTCGGTGCTTTCTTCTTGCACTTGCTAACGGTGACATGCCTGCGAATTGAAAGCTACTACATCAGCAACAATGGAACACAGGCACAGCTCTCTTGCACAGTAGGTACGGTACACATTATGTTCATGCTAACAACATCTGCTATTGAGATGCTTGAATCACACTTCATGTTTCTATTTTCTAAATTAAAATAGACATCGGTACAGCAGAAAAGAAACACACAAATAGGTAGCCAAATTACCTCACAAAGCTATTAGCAAGGTAGTAGCAAAATCCTGAGCTCCATCCAGTTCTTGCTTCGTTTCCACTACGGCAAGCACTCCCTGCCGCTGAAATTGCTGATGAATATGATAGTGAAAAAACAGGGAATTGACCCAAGGAAGTATCCAGACTGTGTGCTATTCATTGGGAGGCGGCTGACTAACTAACTGTTGATGGAGTGGAAGAAGACCGCTGGCTTTCGAGCGGTGGTGCAGCCTGCTGTTGAGAAAGCCTGTTGATGGAGTGGAAGAGGACGGCGGTCCGGCCCTGCTACACCACCTCTTCTCTCTCTCCCTCTCATCTTCTCACCCCTCGCTCCTCCCCAGACGCCCCCACACTCTCCTCCTCCTCCTCCCCCGTCTCATCCACCCCTCCTCGTCCCGGATCCTGCCGGATCCGAGGCTTGTGGGCACGGAGGCGAGCTTCTCCGGCGCCGGCGTCGGTGCCGGTGGCAGCGGGAAAGGAGGCGGGGGTCGTGGGGGAGACACGCGGGCTAGGTCACGGGCATCGGCGGCGGCGGTAGGAGAGGAGGCAGGGGTCGCGGGGAAGACGCGCGGTAGCCAACGTGTTTTTTTGTCGGTACCTGTGATGACGTGGATAGCAGAAGGAGGCGCCCATGCCGCGACTATTAATGGGTTTAATTGCCAATTGCCCCACTCCCAAATTACTAGTGGATTCGATAGCACATTAGCATACATTAACGGAACATGTTTCCCTTATTGCCAATTGGCCACTTTAAGATTACCATCTGGGGAGGTCCGTTTAGTATCCCAAAACTGCTTAGCAAAAGTCGGACAAGTGGGTAATGTTGGGGTGAACCAAAAAAATTTGGGTAGAGCCGGATCTAAGTGTTGGCTAGGTAAACGCCCCGTAGTAAGAGGGGTAGTTATGAACCCTATGGACCACCCCCATGGGGGCGGTGAAGGGAAAGCTCCCATTGGTAGAAAAAAAAACCACAACCCCTTGGGGTTATCCTGCGCTTGGAAGAAGAACTAGGAAAAGGAAAAAATATAGCGATAGTTTTATTCTTCGTCGCCGTAAGTAAATACGTAACCAGGAATATGGAAAATTGCATTTTTGGAATTTGCAATAATGCGACGGGCGAACGACGGGAATTGAACCCGCGCATGGTGGATTCACAATCCACTGCCTTGATCCATTTGGCTACATCCGCCCCTTATCCAGCTAAAGGATTTTTTTTCTTTTTTCCATTGATAATTATTCTATTTATTCTGACCTCCGTACTTCGATCGAGATATTGGACATAGAATGCCACTCTTTAAAAAGGAAAAAAAAGGAGTAATCAGCTGTGACAGGAAAAAAACGAATCCTTTTGTAGCTCATCATTTATTGGCAAAGATAGAAAAGGTCAATATGAAGGAGGAGAAAGAAACAATAGTAACGTGGTCCCGGGCATCTAGCATTCTACCCACAATGGTTGGCCATACAATCGCGATTCATAATGGAAAGGAACATATACCTATTTACATAACAAATCCTATGGTAGGTCGCAAATTGGGGGAATTCGTGCCTACTCGGCATTTCACGAGTTATGAAAATGCAAGAAAGGATACTAAATCTCGTCGTTAACTGAATTCTGAATAGAAACATTAAGAAGAAGAAAAAGATTCAAAATAAAGACAGAAATACCCAATATCTTGTTCTAGCAAGATATTGGGTATTTCTGTCTTTTCTTTCTTCAAAAATTCTTATATGTTAGCACAAAAACCTTATCCATTAATAGATGGAACTTCAATAGCAGCTAAGTCTAGAGGGAAGTTGTGAGCGTTACGTTCGTGCATTACTTCCATACCAAGGTTAGCACGGTTGATGATATCAGCCCAAGTATTAATAACGCGACCTTGACTATCAACTACAAATTGGTTGAAATTGAAACCATTTAGGTTGAAAGCCATAGTACTAATACCTAAAGCAGTGAACCAGATTCCTACTACAGGCCAAGCAGCCAAGAAGAAGTGTAAAGAACGAGAGTTGTTGAAACTAGCATATTGGAAGATTAATCGGCCAAAATAACCATGAGCAGCCACAATATTATAAGTTTCTTCATCTTGACCAAATTTGTAACCCTCATTAGCAGATTCATTTTCAGTAGTTTCCCTGATCAAACTAGAGGTTACCAAGGAACCATGCATAGCACTGAATAGGGAACCGCCGAATACACCAGCTACACCTAACATGTGGAATGGATGCATAAGGATGTTGTGCTCTGCCTGGAATACAATCATAAAGTTGAAAGTACCAGAGATTCCTAAAGGCATACCATCAGAAAAGCTTCCTTGACCAATAGGGTAAATCAAGAAAACAGCAGTAGCAGCTGCAATGGGAGCTGAATATGCTACAGCAATCCAAGGACGCATACCCAGACGGAAACTAAGTTCCCACTCACGACCCATATAACAAGCTACACAAGTAAGAAATGTAGAACAATTAGCTCATAAGGACCACCATTGTATAACCACTCATCAACAGATGCAGCTTCCCAAATTGGGTAAAAGTGCAATCCGATCGCCGCAGAAGTAGGGATAATAGCACCAGAGATAATATTGTTTCCATAAAGTAAAGAACCAGAAACAGGCTCACGAATACCATCAATATCTATTGGAGGGGCAGCGATGAAGGCGATAATAAATACAGAAGTTGCGGTCAATAAGGTAGGGATCATCAAAACACCGAACCATCTGATGTAAAGACGATTTTCAGTGCTAGTTATCCAGTTGCAGAAGCGACCCCACAGGCTTGTACTTTCACGTCTCTCTAAAATTGCAGTCATTGTAAGAACTTGGTTTATTCAAATTGCAAGGACTCCCAAGCACACGTATTAACTAGAATATAGATAATAGAAGGCTTGTTATTTAACAGTATAACATAGACTATATACCAATGTCAACCAAGTCAGCCCAAAGATTAGCTATCCATATAACTAAATTAACCAAACCAATAATTTTGTATTTGTAAATGAAGTGAGTCAAAGTTAAAAACTTTGATGGGTCTTTTCTATATGGGTTGCCCGGGACTCGAACCCGGAACTAGTCGGATGGAGTAGATAATTCTTCCTTGTTACAATAGAGAAAAATCCCTCCCCAAATCGTGCTTGCATTTTTCATTGCACACGACTTTCCCTATGTAGAAATAGCCAATTTCTATTCCAAAGAGGAAGTTCTACTAATTTTTTTAATAAGTAAGTTGATTCACCTACTCTTTATTATAATAAAAAGAACATTTCAGAATGAAAAATAGAAAAGTTTTTTCTTGATCATTTATTAACCCTTTCCTATTTCTTAATTTCGTCTAATGATTAATTAAGATGGTTGACCAGGTCATTGATACGTATAATATCCAAATACCAAATACGCTCAATGTGTGATCCACAAAAAGAAAAAAGAGTTGTTTTGGTGAACATCAAAGAAAAAACTTGCTCTTCTTCCATAAAAAATTCTTCTAAAAATGCCGAACCCAATCGTTGCATAAAAGTTCGTACCGTGCTTTTATGTTTACGAGCTAAAGTTCTAGCGCATGAAAGTCGAAGTATATACTTTAGTCGATACAAAGTCCGTTTTTTCGAAGATCCACTATGATAATGAAAAAGATTTCTACATATCCGACCAAATCGATCAAGAATATCCCAATCTGATAAATCTGTCCAAATGGGTTTACTAATAGGATGCCCCGATCCAGTACAAAATTGATCTTTTGATAAGTATCCTATGGGGAGAGTAGCGAGGACTATGGTATCGAATTTTTCATTCGAGTATCTATTAGAAATGAATTCTCCAGCATTTGATTCCTTACTAACAAAGAACTTTTTGGTACACTTGAAAGGTACCCCATAAAATCGAAGCAAGAGTTTGCTAATTGGTTTATATGGATTCTTCGCGGCTGAGTCTAAAAACAGAAATAATATTGCCAGAAATTGATAAGGTAGCATTTCCATTTCTTCTTCAAAAAAAAAGTGCCTTTTGATGCAAGAATTGCCTTTCCTTGATATCGAACATAATGCATACGAGGATCCATAAAGAACCATAGGGTTTTCCGAGAAAAACCAGGGTACATTATCCCAAAATGTTCCATCTTCCTAGAAAAGTGGATTCGTTCCAGAAAAGTTCCAGAAGATGCTAATGGTAAGCAAGAAGATTGTTTACGAAGGAACAACAAAAAAAATTCATATTCTGATACATAAGAGTTATATAGGAATCGAAATAGTCTTTTATTTTCTTTTTAGAAAAAAATGGATTTCATTGATGTAATAAAACTATTCCAATTCGAATAATAGTTGAGAAAGAATCGCAATAAATGCAAAGATGGAACATCTTGGATACGGTATTGAAGGAGTTGAACCAGGATTTCCAAATGGATAGGATAGGGTATTTCTATATGTGATAGATAATCCAAATGCAAAAATTTGTCTTCTAAAAAGGGAAATATTGAATGAATAGAGCGTAAATTCTGAAACTTTGGTATTTCTTTTTCTTTCGGACAAAATAATTCCCGTAGCGAGAATGGGATTTCCACAACGATCGCAAACCCTTCAGATAGAATCTGAGAATAAAACTCAGAATAAAAATTATTTTTGTAATCCAATAATCGATCTTGGTTAGAATGATTAACCGAGTTATCCAAAAAATTCTGCTGATACATTCGAATAATTAAACGTTTCACAAGTAGTGAACTAAATTTCTTGTTATTACAACTAACAACTATTTCCACAGGTTCAGAACCATTTAATCCATAATGGTGGGCAAATGCATAAATATATTCCTGAAAGAGAAGTGGGTAGACAAAGTATTGTTGACGAGATTTATGTTTTTCTGAATACCCTTCGAATTTTTCCATTTGTATTTCTACTTGAATCAGAGAGAAGAAGCATCTCTCGGTTTATCGAATGATGATACATAGTGCAATATGGTCAGAACAGGGTGTTGCATTTTTAATACAAACCCTGGAAAGAAAGGGAGTCTAATCCACAGATCTTTTTCTGCTCCTTTTCTACCCAATTAGTTTATGTTTGTTCTAATTAAAAAAAAGAACAGAACAAGTTTTTTATTTTTGCAGGCCAATCGCTCTTTTGACTTTGGAATACAGCCTCTTTATCAATATACTGCTTCTTTTACACATTCAATCCATAACATCCCTTATTCAATCCATAATCAAGAATAATTAGGATTTCTAAAAAAAGAAAAAATAAAGGGTCCACTCATAGCAAAACCCAACCTTTCCCCGCATCCGGCACTAATCTATTTTTAACGTCTAATTAGAGCGGGGAATCATTCCAATTAGGAAGTTCAGCTCGTTGCTTTTTATTTTACCAAAATTGGAGCCAGGCTCTATCCATTTATTCATTAGACCCAGAAAATCGTAATTTTGGATTCCATTCAAAAAAGATTGATTTAATTACGACATGCTATTTTTTCCATTCATTACCTTTGAGGATCAGTCGTGGTCTTCTAGACTCTACCAAGAGTCTGGACGAATTTGTTGTTTCATCCAAATGTGTAAAAGATCATAGTCGCACTTAAAAGCCGAGTACTCTACCATTGAGTTAGCAACCCAGATAAAAAAAGGATCTTAGATACGATCAAAATCCAAAAATCAATGGAATTACACCGCGCGCTTCTGTCAAAACATTGAACTAGCAAGACATCAAAAGATTTTTTTTATCGACCATGAAAAACACTCAAATGCCAAAACGAACAGGTCCGGTTAAATTCCACTAAAGTAAAGTTAAAAAAAGAGCGACCCTAATCATGATGGCCAAATTCTCCTTATTTTTAGCGATTTTTATTAAAAATATATATATATTATATTGTATGAGAATACATGCAAGAGGAACACCCTTATCATTTGAGCGAAGTGTAGGCGGAAAAATTGAATATGGAGTGAGGATAAAGAGACCCATCTATCTACAAATTCTATTTGTTCAATAGACCTTTGTTAATGGAAATACAATGGTAAGAAAACAAATTAGATAGAAAAAGTAAATAAAATAGGGGCTTATGTTGGATTGGCACGATATAATATAAATCCAAATAGGATTAAAAAAGAGGTAAATTGTGTCTAAATAATTAGACAACTAGGAATACTAATAATCTTCTCCTATCCTAATTTTTGATTCATTTAGTTCTTCAATTAACTCAAAGTTCTTTCTTTTTCTTTAAAGAATTCCGCCTTCCTTAAAATATCATAAACAGTTCTTGTTGGTTGAGCACCCTTTTCAAGGAAATAGAGAATAGCTGGAACATTTAAACAAGTTTGATTCTTTATCGGATCATAAAAACCTACTTTTTGAAGATCTCTTCCTCCTCTTCGAGATCGAACATCAATTGCAATGATTCGATAGACAGCTTATTGGGATAGATGTAGATAAACAACGCCCCCCCCCCTAGAAACGTATAGGAGGTTTTCTCCTCATACGGCTCGAGAAAATGATTAGAATTTCTGTCGATAATAATAGAAATTAGACTATGATGTGCATTAATTTCCTTACAGAAAAAACAAATTTCATTTATACTCATGACTCAAGTGGGCTAATTTTGCCTGACAAACTTCGAAGGCAAAATCCTTCCAAAAAATTTGAGTCGTCTTTAAACTCTTTTCTTTGTCTCATTTCGAACGAATTGACTTTTATTCCTTATTCTGATCCAACTCTGTTGTTGAGACAATTGAAAATTGTGTTTACTTGTTCTGGAATCCTTTATCTTTGATTTGTGAAATACTTGGGTTTAGACATTACTTCGGGAATTCCTATTTTTTTCTTTCAAAAGAGTAGCGACATACCCTTTTTTCTTATTTCCTTCGATAAAGCATTTATCTCTTCTATAGAAATCTAATAAGAGGGATTGATTCTGATATACTTTTATTGGACTTTCTTCTTATTTTAACCTTTCGATTTATTTCTATATTAAGGATAGGCTGACAAAGTTGGCCTAATTTATTAGTTTTCACTAACCCTAGATTCTTTCCCTTGATAAAAAAATTCTGTCCTCTCGAGCTCCATCGTGTACTATGTTACTTAAACCCAGCGCAAATTTGGTTCGGAACGAATAGAACAGGCTATGTCGAGCCAAGAGCATTTTCATTACTATGGAAAATGATGGATAGAAAAATCCACAATCGATCATGTCCTTCAAGTCGCCCGTTGCTTTCTACCACATCGTTTTAAACGAAGTTTTACCATAACAAACATTCCTCTTTTCATTGCAAAGTGGTATAGAGAATTGATCCAATATGGATGGAATCATGAATAGTCATTGGTTTAGTTTTTTTATACTAATTAAAACTTGCTATCTATGGAGCAATATGGATAAAAGAAAGTAAGTATTTATCCGGGAAGCCTCCACCAAGATCCAATTTATTTAAACCCATATTAAAATTCTATCATATGAATGAAACATCGTTTGAAAAAGACGACTAAACAAGTTTGCTTAAAACTTATTTATTCTTAAATTTCCACCCTCAACGGATGGCTCGAGATGATCAATCTTGAAGTGAGAAAAGAAGGATTGACTCTTCCTCAATAAATAAACTATCAACCTCCAAAAAAGTTTAATTAATTTAATTACTAGAATTAGAATTCTAGTAGTAATATATTTTTTAGTACCAAAAACAATTAAAAGTAAATAAACTATTCCAATGAAAAGATTGAAAGTTTTTGGTAGTTATAGAATTCTTGTACTTCTTCAACTCGAATACCAAAAGGAAGAAAAAAATATGACTAAGTGATTTTATAGTAGAGGCATATCCTGAATGTGCTTGATAGATCCCATTTTTTCATGAAAATAAAGATAGTCAATTTGACTGGACTTAAGACTTTATTATGTTTTCTGAGAAAGAATAAGATATCATTATTCTCTTTAATAAACTTTTGTCTCGTACGGAATACTATATGATTTCACCATTTGTTTCATCAGAAACAATCTGGGACGGAAGGATTCGAACCTCCGAGTAACGGGACCAAAACCCGCTGCCTTACCACTTGATCACGCCCCATTTCGGGTTTTATGCGACACTAATAAACACTAATATGTTTATTTGTTATTCGTCAATACCATTTCAATTACATAAAAAAGGAGGGATATTCTCTTGCTAGTATTCTACACATGCGGATAATATAGAATCAAAAAAATGCATTGATCATTACATGGAATTCTATTAAGATATTATATGAAAGTCGAATTTATTCCACTCTCATTTGAGAGTGCGAATACAAGGAGGTATTTTGTGTTTGGGAAAGTCCGAAGAAAAAAGATTTTGAATCTGCCTTTTCCTTCTTTCCCTTAAAAAAATAACTCAAGAAAAATCCAATTATTTACTCTACAAGAATGAAATGCTTGTTATGCCTAATATACTTAGTTTAACCTGTATCTGTTTTAATTCTGTTCTTTATCCTACTAGTTTTTTTCTTTGCCAAATTACCCGAAGCTTATGCTATTTTCAATCCAATCGTGGATATTATGCATGTTATACCTCTATTCTTTTTTCTATTAGCCTTTGTTTGGCAAGCTGCTCTAAGTTTTCGATGAAATCTTTAGTACTCTGTATGCCAAATTGAATGATGTGTTCATTCCAAAAAAAATTAAAAATGGGTAAAAGCCGAGAAGTTTTATATTTTTATATTATGAACCTTTGATTCTAAAATTTAAATTCTTCTACATTGAATGGGTAGCTACAGCAATAAATTTGGATCAGCCTTTCTACTCCCCTGCACCTAGGTTGAGCAGGTACCTAAAGGTACCTACACAATACCTAACCACCTAACCCTATTTTTGCTATTGATAAGAGTGCTTATTATAAAAGAATTCTTGCAATTTTTTCAAGAATTCTTTTTTGCATTTTTAGGTATAAAAAAAACCATCCTAGTGGATCCGTGTGGTAAGGAAAAACTGGTAATCTATTCCTTAAAAAAAATCTTGGAGATTATGTAATGCTTACTCTCAAACTTTTTGTTTATACAGTAGTGATATTCTTTGTTTCACTCTTTATCTTTGGATTCTTATCTAATGACCCAGGACGGAATCCTGGACGCGAGGAGTAAAAATTCAGTTTTTTTTCTTATTGGATTTGTTTCGTACATTTATCTATGAGAAAATCCGGGGGTCAGAATTCTTTCCAATTCGAAAGTCCCAAATGATCCAAGGGAGCGGAAAGAGAGGGATTCGAACCCTCGGTACAAAAAAATTGTACAACGGATTAGCAATCCGCCGCTTTAGTCCACTCAGCCATCTCTCCACGTTCCAAAGCGAAAGGTTTCCGTGATATGATATAGGCAAGAAATAAGAAATAACGGTTGCAAAAAACCCCCTTTTTTCAAAAGTCTATAAAAATTATATTGCCAATTCCATTTTAATTATATTATTTTTTCTTAATGTTAATAAAAAAAGAAGAAAATTCTTGTTTTTTCTTTCTAAAAATCGATATTGGCCGAGAGACAATCAAATAGATTTTCTCTTTAGCGGGCATTTCAATATAGGACTTGTTATAATTATAATAAAACAAGCAGGTTATATAAAAAAACGCTTTTTGTCGATTATTTATCAAGAAAGCAAAAAGGGTTCTTATCAAATCCACCATAAAATTGGAAAGAAGCATAAAGTAAGTAGACCTGACTCCTTTAATGATGCCTCTATCCGCTATTCTGATATATAAATTCGATGTAGATGAAATTGTATAAGCGAATTTTTTTTATTTCCTTAGACTTAGACCGCGCAAGACAAGAATTTTGCGCTATTTACGATTTCATATTCTTGTTACTAGATGTTCTATAGGAATAAGAAGAAATCGCAACTCCTTTGCGCTACACATAAAATTGGATTTCGAAGGTCCATTTTTTTATAGGAATCCTCTATTTAGTTCTTCCACCCATGCAATAGAGAGGGAATGGGAAAAGAAGGGTTACTTTTATTTTCATTTTTCCCTTAAAAGATAGACTTTGAAATAGGAGTCTTGGAATAATGCTGAATTCAAAGGTTTATTTCTTTCTATAGTATAAAAAAACAATTTATTTCTATTTCTATAGTATAAGAAAAACAAATAGTATAAGAAAAACAAATCGAATCAAATTCATGGATTTACCACGACCTCGGTTGTGACTGTGACTCCATAGATAAAAATGGGAAATTTCTCTCTTCGAGACCATTGAAAAAGGGCATTGAACGACAAAGAAATCGTCCACAGATAATAAAACTATCATATGCCTTGGAAAGTGATATGAGGTGCTCGAAAATGGTTGAAGTAATTGAATAGGAGGATCACTATGACTATAGCCCTTGGTAGAATTCCTAAAGAAGAAAATGATCTATTTGATACTATGGATGACTGGTTACGAAGGGACCGTTTCGTTTTTGTAGGATGGTCTGGCCTATTGCTCTTTCCTTGTGCTTATTTCGCTTTAGGGGGTTGGTTTACAGGGACAACTTTTGTAACTTCTTGGTATACCCATGGATTGGCTAGTTCCTATTTGGAAGCTTGTAATTTCTTAACCGCAGCAGTTTCTACCCCTGCCAATAGTTTAGCACACTCTTTGTTGCTACTATGGGGGCCCGAAGCACAAGGAGATTTTACTCGTTGGTGTCAATTAGGCGGTCTATGGACTTTTGTAGCTCTCCACGGGGCTTTTGCACTAATAGGTTTCATGTTACGCCAATTTGAACTTGCTCGGCCTGTTCAATTGCGGCCTTATAATGCAATCTCATTCTCTGGTCCAATTGTTGTTTTTGTTTCTGTATTCCTTATTTATCCACTGGGGCAATCTGGTTGGTTCTTTGCGCCGAGTTTTGGCGTAGCAGCGATATTTCGATTCATCCTTTTCTTCCAAGGATTTCATAATTGGACGTTGAACCCATTTCATATGATGGGAGTTGCCGGAGTATTAGGTGCGGCTCTGCTATGCGCTATTCATGGAGCGACCGTAGAAAACACTCTATTTGAGGACGGTGATGGTGCAAATACCTTCCGTGCTTTTAACCCAACTCAAGCTGAAGAAACTTATTCCATGGTCACTGCTAACCGCTTTTGGTCCCAAATCTTTGGTGTCGCTTTTTCCAATAAACGTTGGTTACATTTCTTTATGCTATTTGTACCCGTCACCGGTTTATGGATGAGTGCTATTGGCGTAGTTGGCTTGGCTCTGAACTTATGTGCCTATGACTTTGTTTCCCAGGAAATCCGTGCAGCGTTAGATCCTGAATTTGAGACTTTCTACACCAAAAATATTCTTTTAAACGAGGGTATTCGTGCGTGGATGGCAGCTCAGGATCAGCCTCATGAAAATCTTATATTCCCTGAGGAGGTTCTACCACGTGGAAACGCTCTTTAATGGAACTTTCATTTTAGCTGGTCGTGACCAAGAAACCACCGGCTTTGCTTGGTGGGCTGGGAATGCCAGACTTATCAATTTGTCTGGTAAACTGCTTGGAGCTCATGTAGCCCATGCCGGATTAATCGTATTCTGGGCCGGAGCAATGAACCTATTTGAAGTGGCCCATTTCGTACCAGAAAAGCCCATGTATGAACAAGGGTTGATTTTACTTCCACACTTAGCTACTCTAGGTTGGGGAGTAGGGCCGGGGAGGGAAGTTCTAGATACTTTTCCGTACTTTGTATCTGGCGTACTTCACCTAATTTCCTCCGCAGTCTTAGGCTTCGGTGGCATTTATCACGCGCTTCTGGGACCCGAGACTCTTGAGGAATCTTTTCCATTCTTTGGTTATGTCTGGAAAGATAGAAATAAAATGACTACAATTTTGGGTATTCACTTAATTTTGTTAGGTCTAGGTGCTTTTCTTCTAGTACTCAAGGCTCTTTATTTTGGCGGTGTATATGATACCTGGGCCCCTGGGGGGGAGATGTAAGAAAAATTACCAATTTGACCCTTAGTCCCAGTGTTATATTTGGTTATTTACTAAAATCTCCTTTTGGTGGAGAAGGGTGGATTGTTAGTGTAGATGATTTAGAAGATATAATTGGTGGGCATGTATGCATGGTTGGGTTTTATTTGCGTATTTGGCGGAATTTGGCATATTTTAACCAAACCCTTCGCATGGGCTCGCCGTGCATTTGTACGGTTTGGAGAAGCTTACTTGTCTTATAGTTTAGCTGCTTTATCTGTCTTTGGTTTTATCGCTTGTTGTTTTGTATGGTTCAATAATACAGCTTATCCGAGTGAGTTTTATGGACCCACCGGGCCACAAGCTTCTCAAGCTCAAGCATTTACTTTTCTAGTTAGAGACCAGCGTCTTGGAGCTAATGTGGGATCCGCTCAAGGACCCACAGGTTTAGGTAAATATCTAATGCGTTCCCCAACTGGGGAGGTTATCTTTGGAGGGGAAACTATGCGTTTTTGGGACCTTCGTGCTCCATGGTTAGAACCTCTAAGGGGCCCCAACGGTTTGGACTTGAGTAGGTTGAAAAAAGACATACAACCTTGGCAAGAACGACGCTCAGCAGAATATATGACCCACGCTCCTTTAGGCTCTTTAAATTCCGTGGGTGGCGTAGCTACCGAGATCAATGCAGTTAATTATGTCTCTCCTAGAAGTTGGTTATCAACTTCTCATTTTGTTCTAGGATTCTTCTTTTTTGTGGGCCATTTATGGCATGCAGGAAGAGCCCGAGCTGCTGCAGCAGGTTTTGAAAAGGGAATCGATCGTGATTTGGAACCTGTTCTTTACATTAACAGTCGCGGCATGGGCGCCTCCTTCTGCTATCCACGTCATCCAGACTGTTAAAAGACTGTTAACGGAACGGCTAACCGGATATTATCGACCGTGCTCCAGAAAATAAGGGAAAGTGGAATTCTTTTGTGTGTCTGTTTGGTGCTGGACTTCGGCTAGCTAGGTAGGAGAGTCAAGATAAGTATTGACAGTGTTGAGCTCAATGTACTTATGAAATCACAATCTGTACTTATGAGATCACAATGTGTACTTATGAAATCACAATCTGGATCGCGCAGTAAATTAGTGTATATACTCCTGGCTCTCTTCTTTCAAGATGGATTCTGTTATGATACTACCCCCTCAATCCCAACCCCAGTGCTTTCACCAACTTTGCCAAACAGTGACATTATCATGGGCCAAAAACATATGCTAATCGTAACTATTATATCTTGATAGAGACACGCATAGAAGGAAATGAGACTGTATATAGATTAAGCGGAGACTGTCAGCGTCGATTCAGGTGACGCGGAGGTGAGAAAAGACGCATGATTTGGCGTCGCGATCCGCCGGCACGCATCATGTGCCGCGCAGCCAGATATATCCACCAGAGAAGGGTCACAAGCCATCCTGCCATGCCATGATGCCATGGCCACCGCCATGAGTGGATGAAATGAATGGCTGAATCAGAGGGCCGGGAAGCAGCTAGCCCAAGAAAGGACCGAGGTGTGTAAGCCTTCTCGTCTCCCAATGGACGAATTGAAGTGGAGTGGAGGAGCTGCATGCATGCCAATTGCTGCTGTCCTAGAATTACTGTTCATTCATTTCGTGGCTCCCTAGAGATTCTTCGCGGAAGAGACAAGAGCATACTGCAGCGAGCATATGGGCATACGGGGGTTCGTCGTTGGATGGAGCGCAGTGCAGGGAAGATCAGATCAAAGGAGGAAAAGAATTGAAGGCGCGCATTTGCACGGGAGACGCACGCTGCAGCAACATTTATGCTGCCTGCAATCGAGGTTGATGCAGCCTTCTTCTTGGATGGACGGCCGTCCGGCAATGGGGTCGTAGTAACTGTTGTTGTCTCATTACTGTCCACCTGTGCCTGTGTGCACTGCAACTGCATACATATTGTGGCATACAAATGCATTGAACAAAAGTCAATCGAGAAATTCGAGATCGAGCGGCGGCAGGCAGATGGCCAAGCATTTTTGCGTCCAAAAGCTAAGAAGATTTCAGTGGGAATTTCGCGCTCGCTCGCACTCGACGGCAAAGCATATTCGTCTTCGATACGTACTGCTCATCATGCATGGTACTTCTGCTTTCCGAAAGCAGCTGCTAGCTGGGCCTCTCCTGTCCCGTCCCGGCGCTTTGAGCAACATCGAAACAGAGAGCTACTACCACGAGATATGCTTGTTTGTTTATAGGATGGGATGGAAGGGGAAACAAAAATGCTGAATTCCACATGATGAATTCCTGTCGGCTTCGTTTCTAGGCAGCTACCATTGCAGTACTAGCATATAGCACCTACGTATGGAATTCCATAGAAGAGGAACACACTCTCTTCCTTTCAAGTGCTCCCTCCGTCTCAAAAAACTTGTCCCTCAAATGGATATATCTAACATCAAATTAGTGCTACATACATCCATTTGAGGGACAAGCTTGGGATAAGCTTTTTCGGACGGAGGGAGTACTAATTTGTAGGTTGTTTTTAACTTTAAAAGGCACGGACTACTTAAAAGAGCGAAATACAATTTGTTTCAAATTTGAAGGTGGCGCCAAATATGCAGTGGTGTTGGTGGTGGAGCACATGCATGTCTTCACGCAGTGCAGTGAAACAGAGCATCGCAGGCAGTATATATGCAGTGGTCCTTTTCTCCCTCTCTCAAAGTTACTTTTCCTAATCCAGAGATGCAGTTGCAGGCCACTTTCCTCCCGCAAAGCCGTCGATCAGTGTAGGCGTGTAGCTCAGTACCATCGCATTACTGCATACTAGTGGGAAAAAACGCAACAGGACCCTTTGAACTTGACAATGCAATTTCGTCTTCAGTTTTCTCGGATCTGACCCATTTTTCTACAAAAACTGCACCATTTCTTTGCCATGATAGAGAAGAAGCTACTGCTCGCAAAGAAATTTTGTGGGAACCATTGGCTCGTCTCAAAGCAAGTGAGGATAGACCATGTGGACGGATCGAGGATGATTGTACAAACCTTTTTGTTGCTTTCTTCACTGAGACGGCGATCTGGTTTCATTGTCACCGGCTACTTCTGGCTTCAACTTGTGACTTCCTGACCACTGCATCAACATTGTTACCCCGGCTCCGAGGACGTTTTGGAGATATAAAGGCAGCATCGAGCTTTGCCCATAGTGCGCTACCGGCGAATGCAGGAGTATGGAATATCTTTTTTATACTTGGATTGTATACTTGAGTACTGAAACTTTGTGTTCCTCGTATTGCAAACAGCATGGAATTACATAACTAATACGCGTGTCGATCGGGTTCCGAACAACCTCTGTTCACATTGGTGGTACGGACGAGACCACAGGGAGGTTTCATATCTCTCGATCAAAAGAGCAATGCTGCTTTTTCCCTGGGTATAGAATAGGAATCAATTCGTTTTGCAACGAATCTCGAGACGAGGAAAGGTGGCTTCTTTGGCATTTTGCTGAGCTGGTATGTACCGTGCCGTCCAAGGTTTGGAATATGGTCGGCAATGGATAAGGTAGATCACATGGTTTGGCACCCAACTATTCTTCTCCTCTCACCTGAGGCGGCAGAGCTAGCTAGCTACAGTTTATAGCACGAATGATCACACTATCGTTTTCTTTGACAAAAAAATAAAATAGTTTCGTTATCCATATCTATCCGAGTCAAAATAGCATTAGCTAGCCCTTGGTGTAATCATGGCGATGATGAACCGATCCAAGGTGATTTAGTAGTATTTTAATCTCGGCGAGAGGATTCAGAATCAGAAAGATATTCTTGTCCTCGCAAGGAGAAAAAAGAGGACGAGGGGTGAGCAGTTGGGATTTGGGAGCAGGGCGAGGGAGGCCTGATTGCTCAATGAATGGCATATCCTCCTGTCCTTTTGCCCCCTGCTGACCGATGGATGGATACGACGCCACTGCGAGAATCCTCATGATCCCACAGATGCCTCACTCTCTCTGATCCTATCCAGGCCACCTCATCATGGAACTGATGAGGATTTCGTGTATTAGTTGAGCAAAATTAGGTTTCTCTTTCTAACTCTAGCTAGTATATATGTGACACAGGCAGCTGCTGCTAGCCACCCCATGTATGGAACTTTTGTTCCCATTAACAAAACATCCCCTTCGTATTATTTTTTATGTGTCTAGTTGTGCGGAAAGATCAGCTAATCTAGGGCCTTAGGGTTCTTAACAATTAAATTAGTTTTGTGCTTAATAATTATTTAATTTGGAAATGGACGTACGTTTACGTAGGAGTATCATACATGGTGGTGATTACCATGATGACACCCACAATCAGGTGATCCGTCTTGCCCTCCGTTTCCTTTTCGCTTTAGCTACTCCTCAATCACCTGAAAACTACTCCGTTCCTAAATACTCCCTCCGTTCCTAAATACTTGTCTTTCTAGGCATTTCAAATGACTATCACATACGGATGTATGTAGACATATTTTAGAGTATAGATTCACTCATTTTACTCCGTATGTAGTCACTTGTTGAAATGCCTAGAAAGACAAGTATTTAGAAACGGAGGGAGTACTTGTCTTTCTAGGCATTTCAAATGACTATCACATACGGATGTATGTAGACATATTTTAGAGTGTAGATTCACTCATTTTACTCCGTATGTAGTCACTTGTTGAAATGCCTAGAAAGACAAGTATTTAGGAACGGAGGGAGTACTTGTCTTTCTAGGCATTTCAAATGACTATCACATACGGATGTATGTAGACATATTTTAGAGTGTAGATTCACTCATTTTACTTAATATGTAGTCACTTATTGAAATGCCTAGAAAGACAAGTATTTAGGAACGGAGGGAGTATTCAGGATTAGTCGATTTTTTACCCCCACCGCTTCATGCACGTGATGAGCACTACAGCGTGCTTGCAGCATGCAGCTGATGCATGCAAGCTCGCTTAATCAGCATGACTATTAATCACTAGACGTCTGACAGGCGGCCGAGAATTTTAATGGCATCCGTGTTAGTTTAAATTCAAAATTAAATAAACTTGTTTGTCATCTCTTCCTTCTGGTATCCTGACTAACTTGCGCAAGGTACGTCGACCTAGCTATATAGCAAAGCCAAAGTGACATGTAATCTCAGAAGGTTAGCCATCACTCTCCACAAATAAAGGACAAAGCAAAATCTGAAAAACAAAATAAAGGAACAATATCAAGAAAAGAAGAAGAGAAAAAAAAGGCAAAAGGCTTGTGTCAGCTGCGCTCTACTCACTCGACAATCATGCATGGTACCAATACGAATTATGGTGAGGTGTAGTTAGTGAACAGAAAACACGAAGTCTGCATGTGACTGGCCAAACACGCACGCACCTGCATACGTGACAACACTAAAGCAGGATCTCTCATGCAACACAGCAACGTACTGGAATATTTCGATGGAGTGGTAAGGCCAACTCCACCGCGTGACCCCAAATGGACTTCTGTTTTGTTTGGATTCTGTCCGTTTGGATAGGGATTTGGGGTCGTGTCCAGGTGTGTCCTGGGATGCGGTGGCCGTGCGCCCGCGCGCGGCTGCATCCATTTGCCCCATCCTGTCCGTCAGGGCCAAAAATGCCCATATTCTCATCAAAACTAGTTTGCACGTCCAAATATTTGTCTGAAAATTAAAATAGTTTTACAACCCAATTGAAATTGTCCTTAATAAAAAAGTTTTACAACCAAATCGAAATTGTCTTGACTGAACATAAAATGAACCAATACGTCTACTGGTTGCCAATGTGATCCCACACATGCTCAACCAAGTCATTTTGAAGATTCAAATGACTGTGCCAATCACGCATCTCACGGTGGAATTGCACAAATTGTTCAAATGTGGCCGGGTCTTGGTGCAGGGGCTCAATATTTTCACCTTGATAATCAAATCCTTGGTCGAAGATACTCTCATCACGCTCGTCCTCGACGATCATGTTGTGCATGATCACACAAGCA
243045 3495727 1206 1416 -1 0 1 1 1 Traes_6DS_3B68FB2E11.E1 1 2014-01-21 14:05:47 2014-01-21 14:05:47
243046 3495727 898 1040 -1 1 0 1 1 Traes_6DS_3B68FB2E11.E2 1 2014-01-21 14:05:47 2014-01-21 14:05:47
243998 3495727 8829 9015 1 -1 -1 1 1 Traes_6DS_F1A510F0D1.E1 1 2014-01-21 14:05:48 2014-01-21 14:05:48
247713 3495727 1853 2068 1 0 -1 1 1 Traes_6DS_262C704652.E1 1 2014-01-21 14:05:56 2014-01-21 14:05:56
357233 3495794 3573 3641 -1 1 1 1 1 Traes_5AL_7256A9F19.E16 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357234 3495794 3415 3475 -1 1 2 1 1 Traes_5AL_7256A9F19.E22 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357235 3495794 2985 3124 -1 2 1 1 1 Traes_5AL_7256A9F19.E14 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357236 3495794 1327 1486 -1 1 2 1 1 Traes_5AL_7256A9F19.E17 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357240 3495794 3854 3957 -1 2 1 1 1 Traes_5AL_7256A9F19.E18 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357242 3495794 4455 4791 -1 -1 2 1 1 Traes_5AL_7256A9F19.E20 1 2014-01-21 14:17:38 2014-01-21 14:17:38
357243 3495794 506 1129 -1 2 -1 1 1 Traes_5AL_7256A9F19.E10 1 2014-01-21 14:17:38 2014-01-21 14:17:38
379407 3495644 2408 2611 -1 0 0 1 1 Traes_6BS_5FDE5650B.E1 1 2014-01-21 14:18:24 2014-01-21 14:18:24
382466 3495644 2030 2272 -1 0 0 1 1 Traes_6BS_48A5D59CE.E1 1 2014-01-21 14:18:30 2014-01-21 14:18:30
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment